汉明距离完整性

K. Labib, P. Uznański, D. Wolleb-Graf
{"title":"汉明距离完整性","authors":"K. Labib, P. Uznański, D. Wolleb-Graf","doi":"10.4230/LIPIcs.CPM.2019.14","DOIUrl":null,"url":null,"abstract":"We show, given a binary integer function diamond that is piecewise polynomial, that (+,diamond) vector products are equivalent under one-to-polylog reductions to the computation of the Hamming distance. Examples include the dominance and l_{2p+1} distances for constant p. Our results imply equivalence (up to polylog factors) between the complexity of computing All Pairs Hamming Distance, All Pairs l_{2p+1} Distance and Dominance Matrix Product, and equivalence between Hamming Distance Pattern Matching, l_{2p+1} Pattern Matching and Less-Than Pattern Matching. The resulting algorithms for l_{2p+1} Pattern Matching and All Pairs l_{2p+1}, for 2p+1 = 3,5,7,... are likely to be optimal, given lack of progress in improving upper bounds for Hamming distance in the past 30 years. While reductions between selected pairs of products were presented in the past, our work is the first to generalize them to a general class of functions, showing that a wide class of \"intermediate\" complexity problems are in fact equivalent.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Hamming Distance Completeness\",\"authors\":\"K. Labib, P. Uznański, D. Wolleb-Graf\",\"doi\":\"10.4230/LIPIcs.CPM.2019.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show, given a binary integer function diamond that is piecewise polynomial, that (+,diamond) vector products are equivalent under one-to-polylog reductions to the computation of the Hamming distance. Examples include the dominance and l_{2p+1} distances for constant p. Our results imply equivalence (up to polylog factors) between the complexity of computing All Pairs Hamming Distance, All Pairs l_{2p+1} Distance and Dominance Matrix Product, and equivalence between Hamming Distance Pattern Matching, l_{2p+1} Pattern Matching and Less-Than Pattern Matching. The resulting algorithms for l_{2p+1} Pattern Matching and All Pairs l_{2p+1}, for 2p+1 = 3,5,7,... are likely to be optimal, given lack of progress in improving upper bounds for Hamming distance in the past 30 years. While reductions between selected pairs of products were presented in the past, our work is the first to generalize them to a general class of functions, showing that a wide class of \\\"intermediate\\\" complexity problems are in fact equivalent.\",\"PeriodicalId\":236737,\"journal\":{\"name\":\"Annual Symposium on Combinatorial Pattern Matching\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Symposium on Combinatorial Pattern Matching\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CPM.2019.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2019.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们证明,给定一个二进制整数函数 diamond 是片断多项式函数,(+,diamond) 向量乘积与汉明距离的计算是等价的,而且是一对多对数的还原。我们的结果意味着计算全对汉明距离、全对 l_{2p+1} 距离和支配矩阵积的复杂度之间是等价的(最多为多对数因子)。距离和支配矩阵乘积的复杂度之间是等价的(最多为多对数),而汉明距离模式匹配、l_{2p+1}模式匹配和小于模式匹配之间的等价性。由此产生的 l_{2p+1} 算法和 All Pairs模式匹配和所有配对 l_{2p+1}(2p+1 = 3,5,7,...)的算法很可能是最优的,因为在过去 30 年中,在改进汉明距离上限方面缺乏进展。虽然过去曾提出过选定乘积对之间的还原,但我们的工作是首次将它们推广到一般函数类别中,证明了一大类 "中间 "复杂度问题实际上是等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamming Distance Completeness
We show, given a binary integer function diamond that is piecewise polynomial, that (+,diamond) vector products are equivalent under one-to-polylog reductions to the computation of the Hamming distance. Examples include the dominance and l_{2p+1} distances for constant p. Our results imply equivalence (up to polylog factors) between the complexity of computing All Pairs Hamming Distance, All Pairs l_{2p+1} Distance and Dominance Matrix Product, and equivalence between Hamming Distance Pattern Matching, l_{2p+1} Pattern Matching and Less-Than Pattern Matching. The resulting algorithms for l_{2p+1} Pattern Matching and All Pairs l_{2p+1}, for 2p+1 = 3,5,7,... are likely to be optimal, given lack of progress in improving upper bounds for Hamming distance in the past 30 years. While reductions between selected pairs of products were presented in the past, our work is the first to generalize them to a general class of functions, showing that a wide class of "intermediate" complexity problems are in fact equivalent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信