CAESAR:利用稀疏性和冗余模式的CNN加速器

Seongwoo Kim, Yongjun Kim, Gwang-Jun Byeon, Seokin Hong
{"title":"CAESAR:利用稀疏性和冗余模式的CNN加速器","authors":"Seongwoo Kim, Yongjun Kim, Gwang-Jun Byeon, Seokin Hong","doi":"10.1109/ITC-CSCC58803.2023.10212679","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNN) have shown outstanding performance in many computer vision applications. However, CNN Inference on mobile and edge devices is challenging due to high computation demands. Recently, many prior studies have tried to address this challenge by reducing the data precision with quantization techniques, leading to abundant redundancy in the CNN models. This paper proposes CAESAR, a CNN accelerator that eliminates redundant computations to reduce the computation demands of CNN inference. By analyzing the computation pattern of the convolution layer, CAESAR predicts the location where the redundant computations occur and removes them in the executions. After that, CAESAR remaps the remaining effectual computations on the processing elements originally mapped to the redundant computations so that all processing elements are fully utilized. Based on our evaluation with a cycle-level microarchitecture simulator, CAESAR achieves an overall speedup of up to 2.13x and saves energy by 78% over the TPU-like baseline accelerator.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CAESAR: A CNN Accelerator Exploiting Sparsity and Redundancy Pattern\",\"authors\":\"Seongwoo Kim, Yongjun Kim, Gwang-Jun Byeon, Seokin Hong\",\"doi\":\"10.1109/ITC-CSCC58803.2023.10212679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional Neural Networks (CNN) have shown outstanding performance in many computer vision applications. However, CNN Inference on mobile and edge devices is challenging due to high computation demands. Recently, many prior studies have tried to address this challenge by reducing the data precision with quantization techniques, leading to abundant redundancy in the CNN models. This paper proposes CAESAR, a CNN accelerator that eliminates redundant computations to reduce the computation demands of CNN inference. By analyzing the computation pattern of the convolution layer, CAESAR predicts the location where the redundant computations occur and removes them in the executions. After that, CAESAR remaps the remaining effectual computations on the processing elements originally mapped to the redundant computations so that all processing elements are fully utilized. Based on our evaluation with a cycle-level microarchitecture simulator, CAESAR achieves an overall speedup of up to 2.13x and saves energy by 78% over the TPU-like baseline accelerator.\",\"PeriodicalId\":220939,\"journal\":{\"name\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC-CSCC58803.2023.10212679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)在许多计算机视觉应用中表现出优异的性能。然而,在移动和边缘设备上的CNN推理由于高计算需求而具有挑战性。最近,许多先前的研究试图通过量化技术降低数据精度来解决这一挑战,导致CNN模型中存在大量冗余。本文提出了一种消除冗余计算的CNN加速器CAESAR,以降低CNN推理的计算需求。通过分析卷积层的计算模式,CAESAR预测冗余计算发生的位置,并在执行中删除它们。之后,CAESAR将最初映射到冗余计算的处理元素上的剩余有效计算重新映射到冗余计算,以便充分利用所有处理元素。根据我们对循环级微架构模拟器的评估,CAESAR实现了高达2.13倍的整体加速,并且比类似tpu的基线加速器节省了78%的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CAESAR: A CNN Accelerator Exploiting Sparsity and Redundancy Pattern
Convolutional Neural Networks (CNN) have shown outstanding performance in many computer vision applications. However, CNN Inference on mobile and edge devices is challenging due to high computation demands. Recently, many prior studies have tried to address this challenge by reducing the data precision with quantization techniques, leading to abundant redundancy in the CNN models. This paper proposes CAESAR, a CNN accelerator that eliminates redundant computations to reduce the computation demands of CNN inference. By analyzing the computation pattern of the convolution layer, CAESAR predicts the location where the redundant computations occur and removes them in the executions. After that, CAESAR remaps the remaining effectual computations on the processing elements originally mapped to the redundant computations so that all processing elements are fully utilized. Based on our evaluation with a cycle-level microarchitecture simulator, CAESAR achieves an overall speedup of up to 2.13x and saves energy by 78% over the TPU-like baseline accelerator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信