一种鲁棒的混合噪声多通道脑电信号压缩感知算法

Wei Tao, Chang Li, Juan Cheng
{"title":"一种鲁棒的混合噪声多通道脑电信号压缩感知算法","authors":"Wei Tao, Chang Li, Juan Cheng","doi":"10.1109/GlobalSIP45357.2019.8969357","DOIUrl":null,"url":null,"abstract":"Compressed Sensing (CS) has been widely used for telemonitoring of multichannel electroencephalogram (EEG) signals through wireless boday-area networks. However, most of existing multichannel EEG CS algorithms have not taken the noise into consideation or only considered the Gaussian noise. In this paper, we propose a robust multichannel EEG CS algorithm based on sparse and low rank representation in the presence of mixed noise (SLRMN). Our proposed algorithm involves an optimization model that takes both the Gaussian noise and the implusive noise into consideration, and the alternative direction method of multipliers (ADMM) is also developed to solve the proposed SLRMN. Moreover, we apply our method to EEG database to demonstrate the dramatic improvements in signal recovery compared to the state-of-the-art multichannel EEG CS methods, especially in the presence of mixed noise.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Algorithm for Multichannel Eeg Compressed Sensing with Mixed Noise\",\"authors\":\"Wei Tao, Chang Li, Juan Cheng\",\"doi\":\"10.1109/GlobalSIP45357.2019.8969357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed Sensing (CS) has been widely used for telemonitoring of multichannel electroencephalogram (EEG) signals through wireless boday-area networks. However, most of existing multichannel EEG CS algorithms have not taken the noise into consideation or only considered the Gaussian noise. In this paper, we propose a robust multichannel EEG CS algorithm based on sparse and low rank representation in the presence of mixed noise (SLRMN). Our proposed algorithm involves an optimization model that takes both the Gaussian noise and the implusive noise into consideration, and the alternative direction method of multipliers (ADMM) is also developed to solve the proposed SLRMN. Moreover, we apply our method to EEG database to demonstrate the dramatic improvements in signal recovery compared to the state-of-the-art multichannel EEG CS methods, especially in the presence of mixed noise.\",\"PeriodicalId\":221378,\"journal\":{\"name\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP45357.2019.8969357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

压缩感知技术已广泛应用于通过无线体区网络对多通道脑电图信号进行远程监测。然而,现有的多通道脑电信号CS算法大多没有考虑噪声或只考虑高斯噪声。在本文中,我们提出了一种基于混合噪声(SLRMN)下的稀疏和低秩表示的鲁棒多通道EEG CS算法。我们提出了一个同时考虑高斯噪声和脉冲噪声的优化模型,并提出了乘法器的可选方向法(ADMM)来求解所提出的SLRMN。此外,我们将该方法应用于脑电图数据库,以证明与最先进的多通道脑电图CS方法相比,该方法在信号恢复方面有显着改善,特别是在存在混合噪声的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Algorithm for Multichannel Eeg Compressed Sensing with Mixed Noise
Compressed Sensing (CS) has been widely used for telemonitoring of multichannel electroencephalogram (EEG) signals through wireless boday-area networks. However, most of existing multichannel EEG CS algorithms have not taken the noise into consideation or only considered the Gaussian noise. In this paper, we propose a robust multichannel EEG CS algorithm based on sparse and low rank representation in the presence of mixed noise (SLRMN). Our proposed algorithm involves an optimization model that takes both the Gaussian noise and the implusive noise into consideration, and the alternative direction method of multipliers (ADMM) is also developed to solve the proposed SLRMN. Moreover, we apply our method to EEG database to demonstrate the dramatic improvements in signal recovery compared to the state-of-the-art multichannel EEG CS methods, especially in the presence of mixed noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信