半监督协同分类算法的应用研究

Chongchong Yu, L. Shang, L. Tan, Xuyan Tu, Yang Yang
{"title":"半监督协同分类算法的应用研究","authors":"Chongchong Yu, L. Shang, L. Tan, Xuyan Tu, Yang Yang","doi":"10.1109/CCIS.2012.6664244","DOIUrl":null,"url":null,"abstract":"The treatment method of Tri-Training algorithm in classifier selection and confidence estimation breaks through the limitation of Co-training algorithm. In order to further improve the classifiers' performance, a semi-supervised collaborative classification algorithm with enhanced difference makes some improvement respectively on classifier diversity, model update strategy and unlabeled sample prediction method. Because of the use of different classifiers and consideration of classifier diversity, this algorithm has good performance in unbalanced sample set classification. Establish classification model based on the above algorithm, and use it to do experiment with bridge structural health monitoring data, the results of which demonstrate the validity and applicability.","PeriodicalId":392558,"journal":{"name":"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on application of semi-supervised collaborative classification algorithm\",\"authors\":\"Chongchong Yu, L. Shang, L. Tan, Xuyan Tu, Yang Yang\",\"doi\":\"10.1109/CCIS.2012.6664244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The treatment method of Tri-Training algorithm in classifier selection and confidence estimation breaks through the limitation of Co-training algorithm. In order to further improve the classifiers' performance, a semi-supervised collaborative classification algorithm with enhanced difference makes some improvement respectively on classifier diversity, model update strategy and unlabeled sample prediction method. Because of the use of different classifiers and consideration of classifier diversity, this algorithm has good performance in unbalanced sample set classification. Establish classification model based on the above algorithm, and use it to do experiment with bridge structural health monitoring data, the results of which demonstrate the validity and applicability.\",\"PeriodicalId\":392558,\"journal\":{\"name\":\"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2012.6664244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2012.6664244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Tri-Training算法在分类器选择和置信度估计方面的处理方法突破了Co-training算法的局限性。为了进一步提高分类器的性能,一种增强差分的半监督协同分类算法分别对分类器多样性、模型更新策略和无标记样本预测方法进行了改进。由于使用了不同的分类器并考虑了分类器的多样性,该算法在非平衡样本集分类中具有良好的性能。在此基础上建立了分类模型,并对桥梁结构健康监测数据进行了实验,验证了算法的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on application of semi-supervised collaborative classification algorithm
The treatment method of Tri-Training algorithm in classifier selection and confidence estimation breaks through the limitation of Co-training algorithm. In order to further improve the classifiers' performance, a semi-supervised collaborative classification algorithm with enhanced difference makes some improvement respectively on classifier diversity, model update strategy and unlabeled sample prediction method. Because of the use of different classifiers and consideration of classifier diversity, this algorithm has good performance in unbalanced sample set classification. Establish classification model based on the above algorithm, and use it to do experiment with bridge structural health monitoring data, the results of which demonstrate the validity and applicability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信