变电站设备在线识别技术

Xilan Zhao, Weizhou Wang, Meikun Wang, Feng Gao, Changnian Lin
{"title":"变电站设备在线识别技术","authors":"Xilan Zhao, Weizhou Wang, Meikun Wang, Feng Gao, Changnian Lin","doi":"10.1109/ICESIT53460.2021.9696952","DOIUrl":null,"url":null,"abstract":"Fast and reliable identification on transformer substation devices is the prerequisite for AR system to perform virtual information display and virtual-real fusion. Hence the author proposes to establish a transformer substation equipment recognition model relying on deep-learning technology, and deploy it on edge devices such as AR, etc. Firstly, collect the images and videos of transformer substation devices, obtain the dataset of transformer substation devices, and use the mark labeling software to build the dataset. Secondly, apply the Faster RCNN object identification algorithm to establish the transformer substation devices identification model on the basis of VGG16 convolutional network. Then, improve the precision of the model through data migration model training, parameter optimization, and dataset enhancement methods such as image transformation. Finally, deploy the algorithm to Intel Neural Compute Stick 2, realizing the online identification of major devices in transformer substation such as the main transformer, breaker, voltage transformer, current transformer and control cabinet, and providing basis for the application of AR system on the training, practical inspection, and operation and maintenance.","PeriodicalId":164745,"journal":{"name":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online substation equipment recognition technology\",\"authors\":\"Xilan Zhao, Weizhou Wang, Meikun Wang, Feng Gao, Changnian Lin\",\"doi\":\"10.1109/ICESIT53460.2021.9696952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and reliable identification on transformer substation devices is the prerequisite for AR system to perform virtual information display and virtual-real fusion. Hence the author proposes to establish a transformer substation equipment recognition model relying on deep-learning technology, and deploy it on edge devices such as AR, etc. Firstly, collect the images and videos of transformer substation devices, obtain the dataset of transformer substation devices, and use the mark labeling software to build the dataset. Secondly, apply the Faster RCNN object identification algorithm to establish the transformer substation devices identification model on the basis of VGG16 convolutional network. Then, improve the precision of the model through data migration model training, parameter optimization, and dataset enhancement methods such as image transformation. Finally, deploy the algorithm to Intel Neural Compute Stick 2, realizing the online identification of major devices in transformer substation such as the main transformer, breaker, voltage transformer, current transformer and control cabinet, and providing basis for the application of AR system on the training, practical inspection, and operation and maintenance.\",\"PeriodicalId\":164745,\"journal\":{\"name\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESIT53460.2021.9696952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESIT53460.2021.9696952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速、可靠地识别变电站设备是增强现实系统实现虚拟信息显示和虚实融合的前提。因此,笔者提出建立基于深度学习技术的变电站设备识别模型,并将其部署在AR等边缘设备上。首先,采集变电站设备的图像和视频,获取变电站设备的数据集,并使用标记标注软件构建数据集。其次,应用Faster RCNN目标识别算法,建立基于VGG16卷积网络的变电站设备识别模型。然后,通过数据迁移模型训练、参数优化以及图像变换等数据集增强方法提高模型的精度。最后将该算法部署到Intel Neural Compute Stick 2上,实现了对变电站主变压器、断路器、电压互感器、电流互感器、控制柜等主要设备的在线识别,为AR系统在培训、实际巡检、运维等方面的应用提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online substation equipment recognition technology
Fast and reliable identification on transformer substation devices is the prerequisite for AR system to perform virtual information display and virtual-real fusion. Hence the author proposes to establish a transformer substation equipment recognition model relying on deep-learning technology, and deploy it on edge devices such as AR, etc. Firstly, collect the images and videos of transformer substation devices, obtain the dataset of transformer substation devices, and use the mark labeling software to build the dataset. Secondly, apply the Faster RCNN object identification algorithm to establish the transformer substation devices identification model on the basis of VGG16 convolutional network. Then, improve the precision of the model through data migration model training, parameter optimization, and dataset enhancement methods such as image transformation. Finally, deploy the algorithm to Intel Neural Compute Stick 2, realizing the online identification of major devices in transformer substation such as the main transformer, breaker, voltage transformer, current transformer and control cabinet, and providing basis for the application of AR system on the training, practical inspection, and operation and maintenance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信