利用随机过程的可变形区域模型应用于超声心动图图像

I. Herlin, C. Nguyen, C. Graffigne
{"title":"利用随机过程的可变形区域模型应用于超声心动图图像","authors":"I. Herlin, C. Nguyen, C. Graffigne","doi":"10.1109/CVPR.1992.223139","DOIUrl":null,"url":null,"abstract":"The problem of improving an initial segmentation of medical data by making use of gray level, texture, and gradient information is addressed. The mathematical environment is that of Markov random fields and stochastic processes. This yields two major advantages: automatic selection of program parameters and ergonomic software that can be used to test homogeneity properties of regions. The method is applied to echocardiographic images in order to segment cardiac cavities.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"355 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"A deformable region model using stochastic processes applied to echocardiographic images\",\"authors\":\"I. Herlin, C. Nguyen, C. Graffigne\",\"doi\":\"10.1109/CVPR.1992.223139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of improving an initial segmentation of medical data by making use of gray level, texture, and gradient information is addressed. The mathematical environment is that of Markov random fields and stochastic processes. This yields two major advantages: automatic selection of program parameters and ergonomic software that can be used to test homogeneity properties of regions. The method is applied to echocardiographic images in order to segment cardiac cavities.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"355 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

解决了利用灰度、纹理和梯度信息对医疗数据进行初始分割的问题。数学环境是马尔可夫随机场和随机过程。这产生了两个主要优点:自动选择程序参数和人体工程学软件,可用于测试区域的均匀性。该方法应用于超声心动图图像,以分割心脏腔
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deformable region model using stochastic processes applied to echocardiographic images
The problem of improving an initial segmentation of medical data by making use of gray level, texture, and gradient information is addressed. The mathematical environment is that of Markov random fields and stochastic processes. This yields two major advantages: automatic selection of program parameters and ergonomic software that can be used to test homogeneity properties of regions. The method is applied to echocardiographic images in order to segment cardiac cavities.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信