提高H.266/VVC编码效率的深度学习技术

J. Fang, Chen Ou, Ting-Chen Yeh, Yu-Yang Wang
{"title":"提高H.266/VVC编码效率的深度学习技术","authors":"J. Fang, Chen Ou, Ting-Chen Yeh, Yu-Yang Wang","doi":"10.1109/IS3C57901.2023.00059","DOIUrl":null,"url":null,"abstract":"H.266/VVC modifies the quadtree structure of HEVC and adopts the Quadtree with nested multi-type tree (QT-MTT) encoding structure to search for the best encoding unit. Although the QT-MTT encoding structure has better encoding efficiency, it also increases the computational complexity and encoding time. This paper mainly focuses on the QT-MTT structure of H.266/VVC intra-frame coding and proposes the use of convolutional neural networks (CNNs) based on deep learning to prematurely terminate the decision of the horizontal binary tree, horizontal ternary tree, vertical binary tree, or vertical ternary tree of $32\\times 32$ coding units, and skip the rate distortion optimization (RDO) step to save encoding time of H.266/VVC. Experiments show that this paper only approximately increases BDBR by 0.45 dB, but can reduce% of encoding time.","PeriodicalId":142483,"journal":{"name":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Technology to Improve the Coding Efficiency of H.266/VVC\",\"authors\":\"J. Fang, Chen Ou, Ting-Chen Yeh, Yu-Yang Wang\",\"doi\":\"10.1109/IS3C57901.2023.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"H.266/VVC modifies the quadtree structure of HEVC and adopts the Quadtree with nested multi-type tree (QT-MTT) encoding structure to search for the best encoding unit. Although the QT-MTT encoding structure has better encoding efficiency, it also increases the computational complexity and encoding time. This paper mainly focuses on the QT-MTT structure of H.266/VVC intra-frame coding and proposes the use of convolutional neural networks (CNNs) based on deep learning to prematurely terminate the decision of the horizontal binary tree, horizontal ternary tree, vertical binary tree, or vertical ternary tree of $32\\\\times 32$ coding units, and skip the rate distortion optimization (RDO) step to save encoding time of H.266/VVC. Experiments show that this paper only approximately increases BDBR by 0.45 dB, but can reduce% of encoding time.\",\"PeriodicalId\":142483,\"journal\":{\"name\":\"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IS3C57901.2023.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Sixth International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C57901.2023.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

H.266/VVC修改了HEVC的四叉树结构,采用嵌套多类型树(QT-MTT)编码结构的四叉树来搜索最佳编码单元。QT-MTT编码结构虽然具有较好的编码效率,但也增加了计算复杂度和编码时间。本文主要研究H.266/VVC帧内编码的QT-MTT结构,提出利用基于深度学习的卷积神经网络(cnn)提前终止$32\ × 32$编码单元的水平二叉树、水平三叉树、垂直二叉树或垂直三叉树的决策,并跳过率失真优化(RDO)步骤,节省H.266/VVC的编码时间。实验表明,该方法仅提高了约0.45 dB的BDBR,但可以减少%的编码时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Technology to Improve the Coding Efficiency of H.266/VVC
H.266/VVC modifies the quadtree structure of HEVC and adopts the Quadtree with nested multi-type tree (QT-MTT) encoding structure to search for the best encoding unit. Although the QT-MTT encoding structure has better encoding efficiency, it also increases the computational complexity and encoding time. This paper mainly focuses on the QT-MTT structure of H.266/VVC intra-frame coding and proposes the use of convolutional neural networks (CNNs) based on deep learning to prematurely terminate the decision of the horizontal binary tree, horizontal ternary tree, vertical binary tree, or vertical ternary tree of $32\times 32$ coding units, and skip the rate distortion optimization (RDO) step to save encoding time of H.266/VVC. Experiments show that this paper only approximately increases BDBR by 0.45 dB, but can reduce% of encoding time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信