关于基本群的曲率张量微分方程和仿射连接

N. Ryazanov
{"title":"关于基本群的曲率张量微分方程和仿射连接","authors":"N. Ryazanov","doi":"10.5922/0321-4796-2019-50-15","DOIUrl":null,"url":null,"abstract":"The principal bundle is considered, the base of which is an n-dimensional smooth manifold, and the typical fiber is an r-fold Lie group. Structure equations for the forms of the fundamental group and affine connections are given, each of which contains the corresponding components of the curvature tensor. For each connection, an approach is shown that allows to find the differential equations for the components of the curvature tensor of the corresponding connection in a faster way than by differentiating the expressions of these objects in terms of the connection objects and their Pfaffian derivatives. The method consists in successively solving cubic equations, first by Laptev’s lemma, then by Cartan’s lemma. Taking into account the comparisons modulo basic forms, we obtain already known results (see [3]). Thus, differential equations are derived for the components of the curvature tensor of the first-order fundamentalgroup connection, as well as for the components of the curvature tensor of the affine connection.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About differential equations of the curvature tensors\\nof a fundamental group and affine connections\",\"authors\":\"N. Ryazanov\",\"doi\":\"10.5922/0321-4796-2019-50-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The principal bundle is considered, the base of which is an n-dimensional smooth manifold, and the typical fiber is an r-fold Lie group. Structure equations for the forms of the fundamental group and affine connections are given, each of which contains the corresponding components of the curvature tensor. For each connection, an approach is shown that allows to find the differential equations for the components of the curvature tensor of the corresponding connection in a faster way than by differentiating the expressions of these objects in terms of the connection objects and their Pfaffian derivatives. The method consists in successively solving cubic equations, first by Laptev’s lemma, then by Cartan’s lemma. Taking into account the comparisons modulo basic forms, we obtain already known results (see [3]). Thus, differential equations are derived for the components of the curvature tensor of the first-order fundamentalgroup connection, as well as for the components of the curvature tensor of the affine connection.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2019-50-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2019-50-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑主束,其基是一个n维光滑流形,典型光纤是一个r折李群。给出了基本群和仿射连接形式的结构方程,其中每一种形式都包含曲率张量的相应分量。对于每一个连接,一种方法是允许找到相应连接的曲率张量的分量的微分方程,以更快的方式比微分这些对象的表达式在连接对象和他们的普氏导数。该方法是先用拉普捷夫引理,再用卡坦引理,逐次求解三次方程。考虑到模基本形式的比较,我们得到了已知的结果(见[3])。因此,微分方程推导了一阶基群连接的曲率张量的分量,以及仿射连接的曲率张量的分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About differential equations of the curvature tensors of a fundamental group and affine connections
The principal bundle is considered, the base of which is an n-dimensional smooth manifold, and the typical fiber is an r-fold Lie group. Structure equations for the forms of the fundamental group and affine connections are given, each of which contains the corresponding components of the curvature tensor. For each connection, an approach is shown that allows to find the differential equations for the components of the curvature tensor of the corresponding connection in a faster way than by differentiating the expressions of these objects in terms of the connection objects and their Pfaffian derivatives. The method consists in successively solving cubic equations, first by Laptev’s lemma, then by Cartan’s lemma. Taking into account the comparisons modulo basic forms, we obtain already known results (see [3]). Thus, differential equations are derived for the components of the curvature tensor of the first-order fundamentalgroup connection, as well as for the components of the curvature tensor of the affine connection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信