{"title":"一种新型混合式风波能量转换器的概念验证","authors":"C. Pérez-Collazo, D. Greaves, G. Iglesias","doi":"10.1115/OMAE2018-78150","DOIUrl":null,"url":null,"abstract":"In a global scenario of climate change and raising threats to the marine environment, a sustainable exploitation of offshore wind and wave energy resources is not only crucial for the consolidation of both industries, but also to provide a reliable and accessible source of renewable energy. In this context, and with the shared challenge for both industries to reduce costs, the combination of wind and wave technologies has emerged. In particular, this research deals with a novel hybrid system that integrates an oscillating water column, wave energy converter, with an offshore wind turbine substructure. In this paper, the novel hybrid wind-wave energy converter is studied in a three steps process. First, assessing a preliminary concept by means of a concept development methodology for hybrid wind-wave energy converters. Secondly, an OWC WEC sub-system is defined, on the basis of the results from the first step. Finally, the proof of concept of the WEC sub-system is carried out by means of a physical modelling test campaign at the University of Plymouth’s COAST laboratory.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Proof of Concept of a Novel Hybrid Wind-Wave Energy Converter\",\"authors\":\"C. Pérez-Collazo, D. Greaves, G. Iglesias\",\"doi\":\"10.1115/OMAE2018-78150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a global scenario of climate change and raising threats to the marine environment, a sustainable exploitation of offshore wind and wave energy resources is not only crucial for the consolidation of both industries, but also to provide a reliable and accessible source of renewable energy. In this context, and with the shared challenge for both industries to reduce costs, the combination of wind and wave technologies has emerged. In particular, this research deals with a novel hybrid system that integrates an oscillating water column, wave energy converter, with an offshore wind turbine substructure. In this paper, the novel hybrid wind-wave energy converter is studied in a three steps process. First, assessing a preliminary concept by means of a concept development methodology for hybrid wind-wave energy converters. Secondly, an OWC WEC sub-system is defined, on the basis of the results from the first step. Finally, the proof of concept of the WEC sub-system is carried out by means of a physical modelling test campaign at the University of Plymouth’s COAST laboratory.\",\"PeriodicalId\":306681,\"journal\":{\"name\":\"Volume 10: Ocean Renewable Energy\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Ocean Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-78150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-78150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proof of Concept of a Novel Hybrid Wind-Wave Energy Converter
In a global scenario of climate change and raising threats to the marine environment, a sustainable exploitation of offshore wind and wave energy resources is not only crucial for the consolidation of both industries, but also to provide a reliable and accessible source of renewable energy. In this context, and with the shared challenge for both industries to reduce costs, the combination of wind and wave technologies has emerged. In particular, this research deals with a novel hybrid system that integrates an oscillating water column, wave energy converter, with an offshore wind turbine substructure. In this paper, the novel hybrid wind-wave energy converter is studied in a three steps process. First, assessing a preliminary concept by means of a concept development methodology for hybrid wind-wave energy converters. Secondly, an OWC WEC sub-system is defined, on the basis of the results from the first step. Finally, the proof of concept of the WEC sub-system is carried out by means of a physical modelling test campaign at the University of Plymouth’s COAST laboratory.