在急诊医疗中应用脑CT图像预测脑内血肿扩大

Kazunori Oka, Takumi Hirahara, Yasunobu Nohara, Sozo Inoue, K. Arimura, Syoji Kobashi, K. Iihara
{"title":"在急诊医疗中应用脑CT图像预测脑内血肿扩大","authors":"Kazunori Oka, Takumi Hirahara, Yasunobu Nohara, Sozo Inoue, K. Arimura, Syoji Kobashi, K. Iihara","doi":"10.1109/CYBCONF51991.2021.9464139","DOIUrl":null,"url":null,"abstract":"Intracerebral hematoma (ICH) is the cause of intracerebral hemorrhage. Acute enlargement of the ICH is high risk, and emergency surgical treatment is required. Therefore, prediction of ICH enlargement is essential to improve a survival rate and outcome. The purpose of this study is to find factors to predict the ICH enlargement with thick slice head CT images. We propose three kinds of feature extraction methods, (1) shape and texture features, (2) layered texture features, and (3) anatomical location features. In addition, we introduce an ICH enlargement prediction method using support vector machine (SVM) and feature selection. The experimental results showed that the angular second order moment of the texture feature was the most effective in predicting the ICH enlargement. By using this feature, we were able to predict the ICH enlargement with an accuracy of 75.7%. In addition, we found that normalization of the location and posture improved the prediction accuracy by 2.7% compared to that without normalization.","PeriodicalId":231194,"journal":{"name":"2021 5th IEEE International Conference on Cybernetics (CYBCONF)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictors of Intracerebral Hematoma Enlargement Using Brain CT Images in Emergency Medical Care\",\"authors\":\"Kazunori Oka, Takumi Hirahara, Yasunobu Nohara, Sozo Inoue, K. Arimura, Syoji Kobashi, K. Iihara\",\"doi\":\"10.1109/CYBCONF51991.2021.9464139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intracerebral hematoma (ICH) is the cause of intracerebral hemorrhage. Acute enlargement of the ICH is high risk, and emergency surgical treatment is required. Therefore, prediction of ICH enlargement is essential to improve a survival rate and outcome. The purpose of this study is to find factors to predict the ICH enlargement with thick slice head CT images. We propose three kinds of feature extraction methods, (1) shape and texture features, (2) layered texture features, and (3) anatomical location features. In addition, we introduce an ICH enlargement prediction method using support vector machine (SVM) and feature selection. The experimental results showed that the angular second order moment of the texture feature was the most effective in predicting the ICH enlargement. By using this feature, we were able to predict the ICH enlargement with an accuracy of 75.7%. In addition, we found that normalization of the location and posture improved the prediction accuracy by 2.7% compared to that without normalization.\",\"PeriodicalId\":231194,\"journal\":{\"name\":\"2021 5th IEEE International Conference on Cybernetics (CYBCONF)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 5th IEEE International Conference on Cybernetics (CYBCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBCONF51991.2021.9464139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th IEEE International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBCONF51991.2021.9464139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑内血肿(ICH)是脑出血的病因。脑出血急性扩大是高风险,需要紧急手术治疗。因此,预测脑出血扩大对提高生存率和预后至关重要。本研究的目的是寻找预测头部厚层CT图像脑出血扩大的因素。我们提出了三种特征提取方法:(1)形状和纹理特征,(2)分层纹理特征,(3)解剖位置特征。此外,我们还引入了一种基于支持向量机和特征选择的ICH扩展预测方法。实验结果表明,纹理特征的角二阶矩是预测ICH扩大最有效的方法。通过使用这一特征,我们能够以75.7%的准确率预测脑出血扩大。此外,我们发现位置和姿势的归一化比未归一化的预测精度提高了2.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictors of Intracerebral Hematoma Enlargement Using Brain CT Images in Emergency Medical Care
Intracerebral hematoma (ICH) is the cause of intracerebral hemorrhage. Acute enlargement of the ICH is high risk, and emergency surgical treatment is required. Therefore, prediction of ICH enlargement is essential to improve a survival rate and outcome. The purpose of this study is to find factors to predict the ICH enlargement with thick slice head CT images. We propose three kinds of feature extraction methods, (1) shape and texture features, (2) layered texture features, and (3) anatomical location features. In addition, we introduce an ICH enlargement prediction method using support vector machine (SVM) and feature selection. The experimental results showed that the angular second order moment of the texture feature was the most effective in predicting the ICH enlargement. By using this feature, we were able to predict the ICH enlargement with an accuracy of 75.7%. In addition, we found that normalization of the location and posture improved the prediction accuracy by 2.7% compared to that without normalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信