在线聚合的大样本和确定性置信区间

P. Haas
{"title":"在线聚合的大样本和确定性置信区间","authors":"P. Haas","doi":"10.1109/SSDM.1997.621151","DOIUrl":null,"url":null,"abstract":"The online aggregation system recently proposed by J.M. Hellerstein, et al. (1997) permits interactive exploration of large, complex datasets stored in relational database management systems. Running confidence intervals are an important component of an online aggregation system and indicate to the user the estimated proximity of each running aggregate to the corresponding final result. Large sample confidence intervals contain the final result with a prespecified probability and rest on central limit theorems, while deterministic confidence intervals contain the final query result with probability 1. We show how new and existing central limit theorems, simple bounding arguments, and the delta method can be used to derive formulas for both large sample and deterministic confidence intervals. To illustrate these techniques, we obtain formulas for running confidence intervals in the case of single table and multi table AVG, COUNT, SUM, VARIANCE, and STDEV queries with join and selection predicates. Duplicate elimination and GROUP-BY operations are also considered. We then provide numerically stable algorithms for computing the confidence intervals and analyzing the complexity of these algorithms.","PeriodicalId":159935,"journal":{"name":"Proceedings. Ninth International Conference on Scientific and Statistical Database Management (Cat. No.97TB100150)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":"{\"title\":\"Large-sample and deterministic confidence intervals for online aggregation\",\"authors\":\"P. Haas\",\"doi\":\"10.1109/SSDM.1997.621151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The online aggregation system recently proposed by J.M. Hellerstein, et al. (1997) permits interactive exploration of large, complex datasets stored in relational database management systems. Running confidence intervals are an important component of an online aggregation system and indicate to the user the estimated proximity of each running aggregate to the corresponding final result. Large sample confidence intervals contain the final result with a prespecified probability and rest on central limit theorems, while deterministic confidence intervals contain the final query result with probability 1. We show how new and existing central limit theorems, simple bounding arguments, and the delta method can be used to derive formulas for both large sample and deterministic confidence intervals. To illustrate these techniques, we obtain formulas for running confidence intervals in the case of single table and multi table AVG, COUNT, SUM, VARIANCE, and STDEV queries with join and selection predicates. Duplicate elimination and GROUP-BY operations are also considered. We then provide numerically stable algorithms for computing the confidence intervals and analyzing the complexity of these algorithms.\",\"PeriodicalId\":159935,\"journal\":{\"name\":\"Proceedings. Ninth International Conference on Scientific and Statistical Database Management (Cat. No.97TB100150)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Ninth International Conference on Scientific and Statistical Database Management (Cat. No.97TB100150)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSDM.1997.621151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Ninth International Conference on Scientific and Statistical Database Management (Cat. No.97TB100150)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDM.1997.621151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

摘要

最近由J.M. Hellerstein等人(1997)提出的在线聚合系统允许对存储在关系数据库管理系统中的大型复杂数据集进行交互式探索。运行置信区间是在线聚合系统的重要组成部分,它向用户表明每个运行聚合与相应的最终结果的估计接近程度。大样本置信区间包含具有预先指定概率的最终结果,并依赖于中心极限定理,而确定性置信区间包含概率为1的最终查询结果。我们展示了如何使用新的和现有的中心极限定理,简单的边界参数和delta方法来推导大样本和确定性置信区间的公式。为了说明这些技术,我们获得了在带有连接和选择谓词的单表和多表AVG、COUNT、SUM、VARIANCE和STDEV查询情况下运行置信区间的公式。还考虑了重复消除和GROUP-BY操作。然后,我们提供了数值稳定的算法来计算置信区间并分析这些算法的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-sample and deterministic confidence intervals for online aggregation
The online aggregation system recently proposed by J.M. Hellerstein, et al. (1997) permits interactive exploration of large, complex datasets stored in relational database management systems. Running confidence intervals are an important component of an online aggregation system and indicate to the user the estimated proximity of each running aggregate to the corresponding final result. Large sample confidence intervals contain the final result with a prespecified probability and rest on central limit theorems, while deterministic confidence intervals contain the final query result with probability 1. We show how new and existing central limit theorems, simple bounding arguments, and the delta method can be used to derive formulas for both large sample and deterministic confidence intervals. To illustrate these techniques, we obtain formulas for running confidence intervals in the case of single table and multi table AVG, COUNT, SUM, VARIANCE, and STDEV queries with join and selection predicates. Duplicate elimination and GROUP-BY operations are also considered. We then provide numerically stable algorithms for computing the confidence intervals and analyzing the complexity of these algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信