{"title":"用于可穿戴应用的太赫兹天线设计","authors":"Abdel Baset, M. Imran, A. Alomainy, Q. Abbasi","doi":"10.1049/sbew542e_ch4","DOIUrl":null,"url":null,"abstract":"In this chapter, an overview of wearable antennas operating in the terahertz frequency range made from two-dimensional materials such as graphene is presented. The antenna designs are analyzed in realistic environments in the proximity of human skin. Characteristics such as highly miniaturized and flexible substrate materials of the antennas coupled with excellent antenna performance make these wearable antennas a strong candidate in applications of short-range wireless communication near the human body. The resonant properties of the two-dimensional materials are investigated using their electronic properties. Wireless communication in the terahertz frequency, high-resolution imaging for bio-sensing and disease management, and spectroscopy are anticipated to be some of the early beneficiaries of wearable and flexible antennas. Further investigations in this area of research provide interesting opportunities not only for antenna engineers but also for material scientists and physicists.","PeriodicalId":402494,"journal":{"name":"Nano-Electromagnetic Communication at Terahertz and Optical Frequencies: Principles and Applications","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terahertz antenna design for wearable applications\",\"authors\":\"Abdel Baset, M. Imran, A. Alomainy, Q. Abbasi\",\"doi\":\"10.1049/sbew542e_ch4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, an overview of wearable antennas operating in the terahertz frequency range made from two-dimensional materials such as graphene is presented. The antenna designs are analyzed in realistic environments in the proximity of human skin. Characteristics such as highly miniaturized and flexible substrate materials of the antennas coupled with excellent antenna performance make these wearable antennas a strong candidate in applications of short-range wireless communication near the human body. The resonant properties of the two-dimensional materials are investigated using their electronic properties. Wireless communication in the terahertz frequency, high-resolution imaging for bio-sensing and disease management, and spectroscopy are anticipated to be some of the early beneficiaries of wearable and flexible antennas. Further investigations in this area of research provide interesting opportunities not only for antenna engineers but also for material scientists and physicists.\",\"PeriodicalId\":402494,\"journal\":{\"name\":\"Nano-Electromagnetic Communication at Terahertz and Optical Frequencies: Principles and Applications\",\"volume\":\"08 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Electromagnetic Communication at Terahertz and Optical Frequencies: Principles and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/sbew542e_ch4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Electromagnetic Communication at Terahertz and Optical Frequencies: Principles and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/sbew542e_ch4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Terahertz antenna design for wearable applications
In this chapter, an overview of wearable antennas operating in the terahertz frequency range made from two-dimensional materials such as graphene is presented. The antenna designs are analyzed in realistic environments in the proximity of human skin. Characteristics such as highly miniaturized and flexible substrate materials of the antennas coupled with excellent antenna performance make these wearable antennas a strong candidate in applications of short-range wireless communication near the human body. The resonant properties of the two-dimensional materials are investigated using their electronic properties. Wireless communication in the terahertz frequency, high-resolution imaging for bio-sensing and disease management, and spectroscopy are anticipated to be some of the early beneficiaries of wearable and flexible antennas. Further investigations in this area of research provide interesting opportunities not only for antenna engineers but also for material scientists and physicists.