Enkelejda Kasneci, G. Kasneci, W. Rosenstiel, M. Bogdan
{"title":"眼动数据的贝叶斯在线聚类","authors":"Enkelejda Kasneci, G. Kasneci, W. Rosenstiel, M. Bogdan","doi":"10.1145/2168556.2168617","DOIUrl":null,"url":null,"abstract":"The task of automatically tracking the visual attention in dynamic visual scenes is highly challenging. To approach it, we propose a Bayesian online learning algorithm. As the visual scene changes and new objects appear, based on a mixture model, the algorithm can identify and tell visual saccades (transitions) from visual fixation clusters (regions of interest). The approach is evaluated on real-world data, collected from eye-tracking experiments in driving sessions.","PeriodicalId":142459,"journal":{"name":"Proceedings of the Symposium on Eye Tracking Research and Applications","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"Bayesian online clustering of eye movement data\",\"authors\":\"Enkelejda Kasneci, G. Kasneci, W. Rosenstiel, M. Bogdan\",\"doi\":\"10.1145/2168556.2168617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of automatically tracking the visual attention in dynamic visual scenes is highly challenging. To approach it, we propose a Bayesian online learning algorithm. As the visual scene changes and new objects appear, based on a mixture model, the algorithm can identify and tell visual saccades (transitions) from visual fixation clusters (regions of interest). The approach is evaluated on real-world data, collected from eye-tracking experiments in driving sessions.\",\"PeriodicalId\":142459,\"journal\":{\"name\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2168556.2168617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2168556.2168617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The task of automatically tracking the visual attention in dynamic visual scenes is highly challenging. To approach it, we propose a Bayesian online learning algorithm. As the visual scene changes and new objects appear, based on a mixture model, the algorithm can identify and tell visual saccades (transitions) from visual fixation clusters (regions of interest). The approach is evaluated on real-world data, collected from eye-tracking experiments in driving sessions.