在多台机器上离散作业的无策略分配

E. Friedman, A. Ghodsi, Alexandros Psomas
{"title":"在多台机器上离散作业的无策略分配","authors":"E. Friedman, A. Ghodsi, Alexandros Psomas","doi":"10.1145/2600057.2602889","DOIUrl":null,"url":null,"abstract":"We present a model for fair strategyproof allocations in a realistic model of cloud computing centers. This model has the standard Leontief preferences but also captures a key property of virtualization, the use of containers to isolate jobs. We first present several impossibility results for deterministic mechanisms in this setting. We then construct an extension of the well known dominant resource fairness mechanism (DRF), which somewhat surprisingly does not involve the notion of a dominant resource. Our mechanism relies on the connection between the DRF mechanism and the Kalai-Smorodinsky bargaining solution; by computing a weighted max-min over the convex hull of the feasible region we can obtain an ex-ante fair, efficient and strategyproof randomized allocation. This randomized mechanism can be used to construct other mechanisms which do not rely on users' being expected (ex-ante) utility maximizers, in several ways. First, for the case of $m$ identical machines one can use the convex structure of the mechanism to get a simple mechanism which is approximately ex-post fair, efficient and strategyproof. Second, we present a more subtle construction for an arbitrary set of machines, using the Shapley-Folkman-Starr theorem to show the existence of an allocation which is approximately ex-post fair, efficient and strategyproof. This paper provides both a rigorous foundation for developing protocols that explicitly utilize the detailed structure of the modern cloud computing hardware and software, and a general method for extending the dominant resource fairness mechanism to more complex settings.","PeriodicalId":203155,"journal":{"name":"Proceedings of the fifteenth ACM conference on Economics and computation","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Strategyproof allocation of discrete jobs on multiple machines\",\"authors\":\"E. Friedman, A. Ghodsi, Alexandros Psomas\",\"doi\":\"10.1145/2600057.2602889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a model for fair strategyproof allocations in a realistic model of cloud computing centers. This model has the standard Leontief preferences but also captures a key property of virtualization, the use of containers to isolate jobs. We first present several impossibility results for deterministic mechanisms in this setting. We then construct an extension of the well known dominant resource fairness mechanism (DRF), which somewhat surprisingly does not involve the notion of a dominant resource. Our mechanism relies on the connection between the DRF mechanism and the Kalai-Smorodinsky bargaining solution; by computing a weighted max-min over the convex hull of the feasible region we can obtain an ex-ante fair, efficient and strategyproof randomized allocation. This randomized mechanism can be used to construct other mechanisms which do not rely on users' being expected (ex-ante) utility maximizers, in several ways. First, for the case of $m$ identical machines one can use the convex structure of the mechanism to get a simple mechanism which is approximately ex-post fair, efficient and strategyproof. Second, we present a more subtle construction for an arbitrary set of machines, using the Shapley-Folkman-Starr theorem to show the existence of an allocation which is approximately ex-post fair, efficient and strategyproof. This paper provides both a rigorous foundation for developing protocols that explicitly utilize the detailed structure of the modern cloud computing hardware and software, and a general method for extending the dominant resource fairness mechanism to more complex settings.\",\"PeriodicalId\":203155,\"journal\":{\"name\":\"Proceedings of the fifteenth ACM conference on Economics and computation\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fifteenth ACM conference on Economics and computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2600057.2602889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifteenth ACM conference on Economics and computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2600057.2602889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

在一个现实的云计算中心模型中,提出了一个公平的防策略分配模型。该模型具有标准的Leontief首选项,但也捕获了虚拟化的一个关键属性,即使用容器隔离作业。我们首先提出了在这种情况下确定性机制的几个不可能结果。然后,我们构建了一个众所周知的优势资源公平机制(DRF)的扩展,令人惊讶的是,它不涉及优势资源的概念。我们的机制依赖于DRF机制与Kalai-Smorodinsky议价方案之间的联系;通过计算可行域凸包上的加权极大极小值,可以得到事前公平、高效、防策略的随机分配。这种随机机制可以通过多种方式用于构建其他不依赖于用户预期(事前)效用最大化的机制。首先,对于$m$相同机器的情况,可以使用机制的凸结构得到一个近似事后公平、高效和防策略的简单机制。其次,对于任意一组机器,我们给出了一个更精细的构造,使用Shapley-Folkman-Starr定理来证明存在一个近似事后公平、有效和策略证明的分配。本文为开发明确利用现代云计算硬件和软件的详细结构的协议提供了严格的基础,并为将主导资源公平机制扩展到更复杂的设置提供了一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategyproof allocation of discrete jobs on multiple machines
We present a model for fair strategyproof allocations in a realistic model of cloud computing centers. This model has the standard Leontief preferences but also captures a key property of virtualization, the use of containers to isolate jobs. We first present several impossibility results for deterministic mechanisms in this setting. We then construct an extension of the well known dominant resource fairness mechanism (DRF), which somewhat surprisingly does not involve the notion of a dominant resource. Our mechanism relies on the connection between the DRF mechanism and the Kalai-Smorodinsky bargaining solution; by computing a weighted max-min over the convex hull of the feasible region we can obtain an ex-ante fair, efficient and strategyproof randomized allocation. This randomized mechanism can be used to construct other mechanisms which do not rely on users' being expected (ex-ante) utility maximizers, in several ways. First, for the case of $m$ identical machines one can use the convex structure of the mechanism to get a simple mechanism which is approximately ex-post fair, efficient and strategyproof. Second, we present a more subtle construction for an arbitrary set of machines, using the Shapley-Folkman-Starr theorem to show the existence of an allocation which is approximately ex-post fair, efficient and strategyproof. This paper provides both a rigorous foundation for developing protocols that explicitly utilize the detailed structure of the modern cloud computing hardware and software, and a general method for extending the dominant resource fairness mechanism to more complex settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信