物联网云环境下姿态和表情不变人脸识别的优化深度学习模型

Alsulaiman Abdulaziz, Al-Jonaid Amjad Mohammed Ahmed, Obad Abdullah Yousef Rabea, Jinliang Li
{"title":"物联网云环境下姿态和表情不变人脸识别的优化深度学习模型","authors":"Alsulaiman Abdulaziz, Al-Jonaid Amjad Mohammed Ahmed, Obad Abdullah Yousef Rabea, Jinliang Li","doi":"10.1109/AINIT59027.2023.10212898","DOIUrl":null,"url":null,"abstract":"Face recognition from massive data in Internet-of-Things (IoT)-cloud environments is challenging with limitations in learning the pose and facial expression variations. An intelligent Pose and Expression Invariant Face Recognition Model (PEIFRM) is developed in this paper by extracting the local features of face pose and expression variations using Temporal Stacked Convolutional Denoising Autoencoder (TSCDAE) and Optimized Siamese Convolutional Ladder Networks (OSCLN) for recognition. TSCDAE acquires the local informative features of persons' facial pose and expression variations through different color components. OSCLN is an integration of Siamese neural networks (SNN), semi-supervised ladder form of convolutional neural networks (CNN) and Artificial Lizard Search Optimization (ALSO) to improve the training speed and reduce the error rate with local and global feature fusion to improve the recognition accuracy. Experimental results comparisons showed that the proposed PEIFRM model achieved 98.95% and 99.75% accuracies for LFW and ORL datasets, respectively.","PeriodicalId":276778,"journal":{"name":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Deep Learning Model for Pose and Expression Invariant Face Recognition in an IoT-Cloud Environment\",\"authors\":\"Alsulaiman Abdulaziz, Al-Jonaid Amjad Mohammed Ahmed, Obad Abdullah Yousef Rabea, Jinliang Li\",\"doi\":\"10.1109/AINIT59027.2023.10212898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition from massive data in Internet-of-Things (IoT)-cloud environments is challenging with limitations in learning the pose and facial expression variations. An intelligent Pose and Expression Invariant Face Recognition Model (PEIFRM) is developed in this paper by extracting the local features of face pose and expression variations using Temporal Stacked Convolutional Denoising Autoencoder (TSCDAE) and Optimized Siamese Convolutional Ladder Networks (OSCLN) for recognition. TSCDAE acquires the local informative features of persons' facial pose and expression variations through different color components. OSCLN is an integration of Siamese neural networks (SNN), semi-supervised ladder form of convolutional neural networks (CNN) and Artificial Lizard Search Optimization (ALSO) to improve the training speed and reduce the error rate with local and global feature fusion to improve the recognition accuracy. Experimental results comparisons showed that the proposed PEIFRM model achieved 98.95% and 99.75% accuracies for LFW and ORL datasets, respectively.\",\"PeriodicalId\":276778,\"journal\":{\"name\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINIT59027.2023.10212898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINIT59027.2023.10212898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从物联网(IoT)云环境中的海量数据中进行人脸识别具有挑战性,在学习姿势和面部表情变化方面存在局限性。利用时序叠置卷积去噪自编码器(TSCDAE)和优化暹罗卷积阶梯网络(OSCLN)提取人脸姿态和表情变化的局部特征,建立了一种姿态表情不变智能人脸识别模型(PEIFRM)。TSCDAE通过不同的颜色成分获取人的面部姿态和表情变化的局部信息特征。OSCLN是Siamese neural networks (SNN)、卷积神经网络(CNN)的半监督阶梯形式和人工蜥蜴搜索优化(Artificial Lizard Search Optimization, ALSO)的集成,通过局部和全局特征融合来提高训练速度和降低错误率,从而提高识别精度。实验结果对比表明,本文提出的PEIFRM模型在LFW和ORL数据集上的准确率分别达到98.95%和99.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Deep Learning Model for Pose and Expression Invariant Face Recognition in an IoT-Cloud Environment
Face recognition from massive data in Internet-of-Things (IoT)-cloud environments is challenging with limitations in learning the pose and facial expression variations. An intelligent Pose and Expression Invariant Face Recognition Model (PEIFRM) is developed in this paper by extracting the local features of face pose and expression variations using Temporal Stacked Convolutional Denoising Autoencoder (TSCDAE) and Optimized Siamese Convolutional Ladder Networks (OSCLN) for recognition. TSCDAE acquires the local informative features of persons' facial pose and expression variations through different color components. OSCLN is an integration of Siamese neural networks (SNN), semi-supervised ladder form of convolutional neural networks (CNN) and Artificial Lizard Search Optimization (ALSO) to improve the training speed and reduce the error rate with local and global feature fusion to improve the recognition accuracy. Experimental results comparisons showed that the proposed PEIFRM model achieved 98.95% and 99.75% accuracies for LFW and ORL datasets, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信