{"title":"傅里叶变换与四元数傅里叶变换的卷积与相关关系","authors":"M. Bahri","doi":"10.12988/IJMA.2013.36157","DOIUrl":null,"url":null,"abstract":"In this paper we introduce convolution theorem for the Fourier transform (FT) of two complex functions. We show that the correlation theorem for the FT can be derived using properties of convolution. We develop this idea to derive the correlation theorem for the quaternion Fourier transform (QFT) of the two quaternion functions.","PeriodicalId":431531,"journal":{"name":"International Journal of Mathematical Analysis","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Relationships between Convolution and Correlation for Fourier Transform and Quaternion Fourier Transform\",\"authors\":\"M. Bahri\",\"doi\":\"10.12988/IJMA.2013.36157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce convolution theorem for the Fourier transform (FT) of two complex functions. We show that the correlation theorem for the FT can be derived using properties of convolution. We develop this idea to derive the correlation theorem for the quaternion Fourier transform (QFT) of the two quaternion functions.\",\"PeriodicalId\":431531,\"journal\":{\"name\":\"International Journal of Mathematical Analysis\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/IJMA.2013.36157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/IJMA.2013.36157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relationships between Convolution and Correlation for Fourier Transform and Quaternion Fourier Transform
In this paper we introduce convolution theorem for the Fourier transform (FT) of two complex functions. We show that the correlation theorem for the FT can be derived using properties of convolution. We develop this idea to derive the correlation theorem for the quaternion Fourier transform (QFT) of the two quaternion functions.