傅里叶变换与四元数傅里叶变换的卷积与相关关系

M. Bahri
{"title":"傅里叶变换与四元数傅里叶变换的卷积与相关关系","authors":"M. Bahri","doi":"10.12988/IJMA.2013.36157","DOIUrl":null,"url":null,"abstract":"In this paper we introduce convolution theorem for the Fourier transform (FT) of two complex functions. We show that the correlation theorem for the FT can be derived using properties of convolution. We develop this idea to derive the correlation theorem for the quaternion Fourier transform (QFT) of the two quaternion functions.","PeriodicalId":431531,"journal":{"name":"International Journal of Mathematical Analysis","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Relationships between Convolution and Correlation for Fourier Transform and Quaternion Fourier Transform\",\"authors\":\"M. Bahri\",\"doi\":\"10.12988/IJMA.2013.36157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce convolution theorem for the Fourier transform (FT) of two complex functions. We show that the correlation theorem for the FT can be derived using properties of convolution. We develop this idea to derive the correlation theorem for the quaternion Fourier transform (QFT) of the two quaternion functions.\",\"PeriodicalId\":431531,\"journal\":{\"name\":\"International Journal of Mathematical Analysis\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/IJMA.2013.36157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/IJMA.2013.36157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文介绍了两个复函数的傅里叶变换的卷积定理。我们证明了利用卷积的性质可以推导出傅里叶变换的相关定理。我们发展这一思想来推导两个四元数函数的四元数傅里叶变换(QFT)的相关定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationships between Convolution and Correlation for Fourier Transform and Quaternion Fourier Transform
In this paper we introduce convolution theorem for the Fourier transform (FT) of two complex functions. We show that the correlation theorem for the FT can be derived using properties of convolution. We develop this idea to derive the correlation theorem for the quaternion Fourier transform (QFT) of the two quaternion functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信