一种紧密聚类方法及其在微阵列中的应用

G. Tseng, W. Wong
{"title":"一种紧密聚类方法及其在微阵列中的应用","authors":"G. Tseng, W. Wong","doi":"10.1109/CSB.2003.1227343","DOIUrl":null,"url":null,"abstract":"In this paper we propose a method for clustering that produces tight and stable clusters without forcing all points into clusters. Many existing clustering algorithms have been applied in microarray data to search for gene clusters with similar expression patterns. However, none has provided a way to deal with an essential feature of array data: many genes are expressed sporadically and do not belong to any of the significant biological functions (clusters) of interest. In fact, most current algorithms aim to assign all genes into clusters. For many biological studies, however, we are mainly interested in the most informative, tight and stable clusters with sizes of, say, 20-60 genes for farther investigation. Tight Clustering has been developed specifically to address this problem. The tightest and most stable clusters are identified in a sequential manner through an analysis of the tendency of genes to be grouped together under repeated resampling. We validated this method in the expression profiles of the Drosophila life cycle. The result is shown to better serve biological needs in microarray analysis.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A method for tight clustering: with application to microarray\",\"authors\":\"G. Tseng, W. Wong\",\"doi\":\"10.1109/CSB.2003.1227343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a method for clustering that produces tight and stable clusters without forcing all points into clusters. Many existing clustering algorithms have been applied in microarray data to search for gene clusters with similar expression patterns. However, none has provided a way to deal with an essential feature of array data: many genes are expressed sporadically and do not belong to any of the significant biological functions (clusters) of interest. In fact, most current algorithms aim to assign all genes into clusters. For many biological studies, however, we are mainly interested in the most informative, tight and stable clusters with sizes of, say, 20-60 genes for farther investigation. Tight Clustering has been developed specifically to address this problem. The tightest and most stable clusters are identified in a sequential manner through an analysis of the tendency of genes to be grouped together under repeated resampling. We validated this method in the expression profiles of the Drosophila life cycle. The result is shown to better serve biological needs in microarray analysis.\",\"PeriodicalId\":147883,\"journal\":{\"name\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSB.2003.1227343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种聚类方法,该方法可以产生紧密而稳定的聚类,而无需将所有点都强制聚类。许多现有的聚类算法已经应用于微阵列数据中,以搜索具有相似表达模式的基因簇。然而,没有人提供一种方法来处理阵列数据的一个基本特征:许多基因是零星表达的,不属于任何感兴趣的重要生物学功能(集群)。事实上,目前大多数算法的目标是将所有基因分配到集群中。然而,对于许多生物学研究,我们主要感兴趣的是信息量最大的、紧密的、稳定的、大小为20-60个基因的集群,以供进一步研究。紧密集群是专门为解决这个问题而开发的。最紧密和最稳定的集群是通过分析基因在重复重新采样下被分组在一起的趋势,以顺序的方式确定的。我们在果蝇生命周期的表达谱中验证了这种方法。结果表明,更好地服务于微阵列分析的生物学需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for tight clustering: with application to microarray
In this paper we propose a method for clustering that produces tight and stable clusters without forcing all points into clusters. Many existing clustering algorithms have been applied in microarray data to search for gene clusters with similar expression patterns. However, none has provided a way to deal with an essential feature of array data: many genes are expressed sporadically and do not belong to any of the significant biological functions (clusters) of interest. In fact, most current algorithms aim to assign all genes into clusters. For many biological studies, however, we are mainly interested in the most informative, tight and stable clusters with sizes of, say, 20-60 genes for farther investigation. Tight Clustering has been developed specifically to address this problem. The tightest and most stable clusters are identified in a sequential manner through an analysis of the tendency of genes to be grouped together under repeated resampling. We validated this method in the expression profiles of the Drosophila life cycle. The result is shown to better serve biological needs in microarray analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信