评估自动视频地面真实性应用程序的性能

Scott K. Ralph, J. Irvine, M. R. Stevens, M. Snorrason, D. Gwilt
{"title":"评估自动视频地面真实性应用程序的性能","authors":"Scott K. Ralph, J. Irvine, M. R. Stevens, M. Snorrason, D. Gwilt","doi":"10.1109/AIPR.2004.15","DOIUrl":null,"url":null,"abstract":"Present methods of quantifying the performance of ATR algorithms involves the use of large video datasets that must be truthed by hand, frame-by-frame, requiring vast amounts of time. To reduce this cost, we have developed an application that significantly reduces the cost by only requiring the operator to grade a relatively sparse number of data \"keyframes\". A correlation-based template matching algorithm computes the best position, orientation and scale when interpolating between keyframes. We demonstrate the performance of the automated truthing application, and compare the results to those of a series of human operator test subjects. The START-generated truth is shown to be very close to the mean truth data given by the human operators. Additionally the savings in labor producing the results is also demonstrated.","PeriodicalId":120814,"journal":{"name":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Assessing the performance of an automated video ground truthing application\",\"authors\":\"Scott K. Ralph, J. Irvine, M. R. Stevens, M. Snorrason, D. Gwilt\",\"doi\":\"10.1109/AIPR.2004.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Present methods of quantifying the performance of ATR algorithms involves the use of large video datasets that must be truthed by hand, frame-by-frame, requiring vast amounts of time. To reduce this cost, we have developed an application that significantly reduces the cost by only requiring the operator to grade a relatively sparse number of data \\\"keyframes\\\". A correlation-based template matching algorithm computes the best position, orientation and scale when interpolating between keyframes. We demonstrate the performance of the automated truthing application, and compare the results to those of a series of human operator test subjects. The START-generated truth is shown to be very close to the mean truth data given by the human operators. Additionally the savings in labor producing the results is also demonstrated.\",\"PeriodicalId\":120814,\"journal\":{\"name\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2004.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd Applied Imagery Pattern Recognition Workshop (AIPR'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2004.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

目前量化ATR算法性能的方法涉及到使用大型视频数据集,这些数据集必须手工逐帧处理,需要大量的时间。为了降低这一成本,我们开发了一个应用程序,该应用程序只要求操作员对相对稀疏的数据“关键帧”进行分级,从而大大降低了成本。在关键帧之间插值时,基于关联的模板匹配算法计算最佳位置、方向和比例。我们演示了自动真相应用程序的性能,并将结果与一系列人类操作员测试对象的结果进行了比较。start生成的真值非常接近人类操作员给出的平均真值数据。此外,还证明了产生结果的劳动力节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the performance of an automated video ground truthing application
Present methods of quantifying the performance of ATR algorithms involves the use of large video datasets that must be truthed by hand, frame-by-frame, requiring vast amounts of time. To reduce this cost, we have developed an application that significantly reduces the cost by only requiring the operator to grade a relatively sparse number of data "keyframes". A correlation-based template matching algorithm computes the best position, orientation and scale when interpolating between keyframes. We demonstrate the performance of the automated truthing application, and compare the results to those of a series of human operator test subjects. The START-generated truth is shown to be very close to the mean truth data given by the human operators. Additionally the savings in labor producing the results is also demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信