非交换算术电路的硬度放大

M. Carmosino, R. Impagliazzo, Shachar Lovett, Ivan Mihajlin
{"title":"非交换算术电路的硬度放大","authors":"M. Carmosino, R. Impagliazzo, Shachar Lovett, Ivan Mihajlin","doi":"10.4230/LIPIcs.CCC.2018.12","DOIUrl":null,"url":null,"abstract":"We show that proving mildly super-linear lower bounds on non-commutative arithmetic circuits implies exponential lower bounds on non-commutative circuits. That is, non-commutative circuit complexity is a threshold phenomenon: an apparently weak lower bound actually suffices to show the strongest lower bounds we could desire. This is part of a recent line of inquiry into why arithmetic circuit complexity, despite being a heavily restricted version of Boolean complexity, still cannot prove super-linear lower bounds on general devices. One can view our work as positive news (it suffices to prove weak lower bounds to get strong ones) or negative news (it is as hard to prove weak lower bounds as it is to prove strong ones). We leave it to the reader to determine their own level of optimism.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Hardness Amplification for Non-Commutative Arithmetic Circuits\",\"authors\":\"M. Carmosino, R. Impagliazzo, Shachar Lovett, Ivan Mihajlin\",\"doi\":\"10.4230/LIPIcs.CCC.2018.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that proving mildly super-linear lower bounds on non-commutative arithmetic circuits implies exponential lower bounds on non-commutative circuits. That is, non-commutative circuit complexity is a threshold phenomenon: an apparently weak lower bound actually suffices to show the strongest lower bounds we could desire. This is part of a recent line of inquiry into why arithmetic circuit complexity, despite being a heavily restricted version of Boolean complexity, still cannot prove super-linear lower bounds on general devices. One can view our work as positive news (it suffices to prove weak lower bounds to get strong ones) or negative news (it is as hard to prove weak lower bounds as it is to prove strong ones). We leave it to the reader to determine their own level of optimism.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2018.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2018.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

证明了非交换算术电路上的温和超线性下界意味着非交换算术电路上的指数下界。也就是说,非交换电路复杂性是一种阈值现象:一个表面上很弱的下界实际上足以显示我们所希望的最强下界。这是最近一项研究的一部分:为什么算术电路复杂度,尽管是布尔复杂度的一个严格限制版本,仍然不能证明一般设备上的超线性下界。人们可以将我们的工作视为正面新闻(证明弱下界就足以得到强下界)或负面新闻(证明弱下界和证明强下界一样难)。我们把它留给读者来决定他们自己的乐观程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardness Amplification for Non-Commutative Arithmetic Circuits
We show that proving mildly super-linear lower bounds on non-commutative arithmetic circuits implies exponential lower bounds on non-commutative circuits. That is, non-commutative circuit complexity is a threshold phenomenon: an apparently weak lower bound actually suffices to show the strongest lower bounds we could desire. This is part of a recent line of inquiry into why arithmetic circuit complexity, despite being a heavily restricted version of Boolean complexity, still cannot prove super-linear lower bounds on general devices. One can view our work as positive news (it suffices to prove weak lower bounds to get strong ones) or negative news (it is as hard to prove weak lower bounds as it is to prove strong ones). We leave it to the reader to determine their own level of optimism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信