用斯科特公式估计车辆网络的最优聚类数

F. E. Samann, Shavan K. Askar
{"title":"用斯科特公式估计车辆网络的最优聚类数","authors":"F. E. Samann, Shavan K. Askar","doi":"10.1109/ICOASE56293.2022.10075588","DOIUrl":null,"url":null,"abstract":"Selecting the correct cluster number for K-Clustering algorithms such as K-Medoids is essential for optimal output. The Elbow and Silhouette methods are usually used to select the optimal K number for clustering. However, the high computational complexity makes these methods inefficient in Vehicular Network (VN) environment. Therefore, an efficient K estimating technique is essential for an effective VN clustering scheme. K-medoids algorithm is a Machine Learning clustering algorithm usually implemented by the road infrastructure in the VN. The algorithm selects cluster medoids that minimize the sum of dissimilarities between cluster members and their respective medoids. This paper proposes using Scott's histogram formula for bin numbers to calculate the optimal K number. Estimating the underlying probability density function of the data can give a good approximation of the K number for the K-Medoids algorithm. The clustering algorithm is simulated using OMNET++ and Veins simulators in a VN environment. Using Scott's formula, picking the optimal K number is evaluated against the Elbow method in different traffic density and vehicular speed scenarios. Scott's formula gave a close estimate of the K number when implemented using vehicle coordinates.","PeriodicalId":297211,"journal":{"name":"2022 4th International Conference on Advanced Science and Engineering (ICOASE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating The Optimal Cluster Number For Vehicular Network Using Scott's Formula\",\"authors\":\"F. E. Samann, Shavan K. Askar\",\"doi\":\"10.1109/ICOASE56293.2022.10075588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selecting the correct cluster number for K-Clustering algorithms such as K-Medoids is essential for optimal output. The Elbow and Silhouette methods are usually used to select the optimal K number for clustering. However, the high computational complexity makes these methods inefficient in Vehicular Network (VN) environment. Therefore, an efficient K estimating technique is essential for an effective VN clustering scheme. K-medoids algorithm is a Machine Learning clustering algorithm usually implemented by the road infrastructure in the VN. The algorithm selects cluster medoids that minimize the sum of dissimilarities between cluster members and their respective medoids. This paper proposes using Scott's histogram formula for bin numbers to calculate the optimal K number. Estimating the underlying probability density function of the data can give a good approximation of the K number for the K-Medoids algorithm. The clustering algorithm is simulated using OMNET++ and Veins simulators in a VN environment. Using Scott's formula, picking the optimal K number is evaluated against the Elbow method in different traffic density and vehicular speed scenarios. Scott's formula gave a close estimate of the K number when implemented using vehicle coordinates.\",\"PeriodicalId\":297211,\"journal\":{\"name\":\"2022 4th International Conference on Advanced Science and Engineering (ICOASE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Advanced Science and Engineering (ICOASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOASE56293.2022.10075588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE56293.2022.10075588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为K-Clustering算法(如K-Medoids)选择正确的聚类数对于获得最佳输出至关重要。通常采用肘部法和廓形法选择最优K数进行聚类。然而,这些方法的高计算复杂度使其在车联网环境下效率低下。因此,有效的K估计技术对于有效的VN聚类方案至关重要。K-medoids算法是一种机器学习聚类算法,通常由虚拟网络中的道路基础设施实现。该算法选择的簇介质值与簇成员的簇介质值之间的不相似度之和最小。本文提出使用斯科特的箱数直方图公式来计算最优K数。估计数据的潜在概率密度函数可以很好地近似K- medoids算法的K数。在虚拟网络环境下,使用omnet++和vein模拟器对聚类算法进行了仿真。利用Scott的公式,在不同的交通密度和车速情况下,用肘部法评估选择最优K数。斯科特的公式在使用车辆坐标时给出了K数的近似估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating The Optimal Cluster Number For Vehicular Network Using Scott's Formula
Selecting the correct cluster number for K-Clustering algorithms such as K-Medoids is essential for optimal output. The Elbow and Silhouette methods are usually used to select the optimal K number for clustering. However, the high computational complexity makes these methods inefficient in Vehicular Network (VN) environment. Therefore, an efficient K estimating technique is essential for an effective VN clustering scheme. K-medoids algorithm is a Machine Learning clustering algorithm usually implemented by the road infrastructure in the VN. The algorithm selects cluster medoids that minimize the sum of dissimilarities between cluster members and their respective medoids. This paper proposes using Scott's histogram formula for bin numbers to calculate the optimal K number. Estimating the underlying probability density function of the data can give a good approximation of the K number for the K-Medoids algorithm. The clustering algorithm is simulated using OMNET++ and Veins simulators in a VN environment. Using Scott's formula, picking the optimal K number is evaluated against the Elbow method in different traffic density and vehicular speed scenarios. Scott's formula gave a close estimate of the K number when implemented using vehicle coordinates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信