模型不确定性下的最优停车:随机停车时间法

D. Belomestny, Volker Krätschmer
{"title":"模型不确定性下的最优停车:随机停车时间法","authors":"D. Belomestny, Volker Krätschmer","doi":"10.1214/15-AAP1116","DOIUrl":null,"url":null,"abstract":"In this work we consider optimal stopping problems with conditional convex risk measures called optimised certainty equivalents. Without assuming any kind of time-consistency for the underlying family of risk measures, we derive a novel representation for the solution of the optimal stopping problem. In particular, we generalise the additive dual representation of Rogers (2002) to the case of optimal stopping under uncertainty. Finally, we develop several Monte Carlo algorithms and illustrate their power for optimal stopping under Average Value at Risk.","PeriodicalId":385109,"journal":{"name":"arXiv: Mathematical Finance","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Optimal stopping under model uncertainty: randomized stopping times approach\",\"authors\":\"D. Belomestny, Volker Krätschmer\",\"doi\":\"10.1214/15-AAP1116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we consider optimal stopping problems with conditional convex risk measures called optimised certainty equivalents. Without assuming any kind of time-consistency for the underlying family of risk measures, we derive a novel representation for the solution of the optimal stopping problem. In particular, we generalise the additive dual representation of Rogers (2002) to the case of optimal stopping under uncertainty. Finally, we develop several Monte Carlo algorithms and illustrate their power for optimal stopping under Average Value at Risk.\",\"PeriodicalId\":385109,\"journal\":{\"name\":\"arXiv: Mathematical Finance\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AAP1116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/15-AAP1116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在这项工作中,我们考虑具有条件凸风险措施的最优停止问题,称为优化确定性等效。在不假设潜在风险测度族具有任何时间一致性的情况下,我们导出了最优停止问题解的一种新表示。特别地,我们将Rogers(2002)的加性对偶表示推广到不确定条件下最优停车的情况。最后,我们开发了几种蒙特卡罗算法,并说明了它们在风险平均值下的最优停止能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal stopping under model uncertainty: randomized stopping times approach
In this work we consider optimal stopping problems with conditional convex risk measures called optimised certainty equivalents. Without assuming any kind of time-consistency for the underlying family of risk measures, we derive a novel representation for the solution of the optimal stopping problem. In particular, we generalise the additive dual representation of Rogers (2002) to the case of optimal stopping under uncertainty. Finally, we develop several Monte Carlo algorithms and illustrate their power for optimal stopping under Average Value at Risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信