B. Etzlinger, Florian Meyer, H. Wymeersch, F. Hlawatsch, Gerhard Müller, A. Springer
{"title":"协作式同步定位和同步:迈向低成本硬件实现","authors":"B. Etzlinger, Florian Meyer, H. Wymeersch, F. Hlawatsch, Gerhard Müller, A. Springer","doi":"10.1109/SAM.2014.6882331","DOIUrl":null,"url":null,"abstract":"Cooperative sensor self-localization (CSL) in wireless networks usually requires the nodes to be equipped with specific ranging hardware including ultra-wideband or ultrasonic distance sensors. Such designs are not suitable for application in low-cost, low-power sensor networks. Here, we demonstrate how low-cost, low-power, asynchronous sensor nodes can be used to perform CSL (and, simultaneously, distributed synchronization) by means of time-stamped communication without additional ranging hardware. Our method combines a belief propagation message passing algorithm for cooperative simultaneous localization and synchronization (CoSLAS) with a MAC-layer time stamping scheme.We validate the models underlying the CoSLAS algorithm by means of measurements, and we demonstrate that the localization accuracy achieved by our hardware implementation is far better than that corresponding to the time resolution and measurement errors of the hardware.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Cooperative simultaneous localization and synchronization: Toward a low-cost hardware implementation\",\"authors\":\"B. Etzlinger, Florian Meyer, H. Wymeersch, F. Hlawatsch, Gerhard Müller, A. Springer\",\"doi\":\"10.1109/SAM.2014.6882331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative sensor self-localization (CSL) in wireless networks usually requires the nodes to be equipped with specific ranging hardware including ultra-wideband or ultrasonic distance sensors. Such designs are not suitable for application in low-cost, low-power sensor networks. Here, we demonstrate how low-cost, low-power, asynchronous sensor nodes can be used to perform CSL (and, simultaneously, distributed synchronization) by means of time-stamped communication without additional ranging hardware. Our method combines a belief propagation message passing algorithm for cooperative simultaneous localization and synchronization (CoSLAS) with a MAC-layer time stamping scheme.We validate the models underlying the CoSLAS algorithm by means of measurements, and we demonstrate that the localization accuracy achieved by our hardware implementation is far better than that corresponding to the time resolution and measurement errors of the hardware.\",\"PeriodicalId\":141678,\"journal\":{\"name\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2014.6882331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cooperative simultaneous localization and synchronization: Toward a low-cost hardware implementation
Cooperative sensor self-localization (CSL) in wireless networks usually requires the nodes to be equipped with specific ranging hardware including ultra-wideband or ultrasonic distance sensors. Such designs are not suitable for application in low-cost, low-power sensor networks. Here, we demonstrate how low-cost, low-power, asynchronous sensor nodes can be used to perform CSL (and, simultaneously, distributed synchronization) by means of time-stamped communication without additional ranging hardware. Our method combines a belief propagation message passing algorithm for cooperative simultaneous localization and synchronization (CoSLAS) with a MAC-layer time stamping scheme.We validate the models underlying the CoSLAS algorithm by means of measurements, and we demonstrate that the localization accuracy achieved by our hardware implementation is far better than that corresponding to the time resolution and measurement errors of the hardware.