树突神经元模型及其逼近能力

Fei Teng, Yuki Todo
{"title":"树突神经元模型及其逼近能力","authors":"Fei Teng, Yuki Todo","doi":"10.1109/ICSAI48974.2019.9010147","DOIUrl":null,"url":null,"abstract":"Recently, an artificial neural network (ANN) named dendritic neuron model has been proposed which mimics the nonlinear interaction in the signal processing in a neuron. in order to research the approximation performance of this model, this paper use the mathematical theory to prove that single dendritic neuron model neuron is able to approximate any Borel measurable function to any desired degree of accuracy.","PeriodicalId":270809,"journal":{"name":"2019 6th International Conference on Systems and Informatics (ICSAI)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dendritic Neuron Model and Its Capability of Approximation\",\"authors\":\"Fei Teng, Yuki Todo\",\"doi\":\"10.1109/ICSAI48974.2019.9010147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, an artificial neural network (ANN) named dendritic neuron model has been proposed which mimics the nonlinear interaction in the signal processing in a neuron. in order to research the approximation performance of this model, this paper use the mathematical theory to prove that single dendritic neuron model neuron is able to approximate any Borel measurable function to any desired degree of accuracy.\",\"PeriodicalId\":270809,\"journal\":{\"name\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 6th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI48974.2019.9010147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI48974.2019.9010147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,人们提出了一种模拟神经元信号处理过程中非线性相互作用的人工神经网络——树突神经元模型。为了研究该模型的逼近性能,本文利用数学理论证明了单个树突神经元模型神经元能够逼近任意Borel可测函数达到任意精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dendritic Neuron Model and Its Capability of Approximation
Recently, an artificial neural network (ANN) named dendritic neuron model has been proposed which mimics the nonlinear interaction in the signal processing in a neuron. in order to research the approximation performance of this model, this paper use the mathematical theory to prove that single dendritic neuron model neuron is able to approximate any Borel measurable function to any desired degree of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信