{"title":"挖掘具有未知周期的部分周期事件模式","authors":"Sheng Ma, J. Hellerstein","doi":"10.1109/ICDE.2001.914829","DOIUrl":null,"url":null,"abstract":"Periodic behavior is common in real-world applications. However in many cases, periodicities are partial in that they are present only intermittently. The authors study such intermittent patterns, which they refer to as p-patterns. The formulation of p-patterns takes into account imprecise time information (e.g., due to unsynchronized clocks in distributed environments), noisy data (e.g., due to extraneous events), and shifts in phase and/or periods. We structure mining for p-patterns as two sub-tasks: (1) finding the periods of p-patterns and (2) mining temporal associations. For (2), a level-wise algorithm is used. For (1), we develop a novel approach based on a chi-squared test, and study its performance in the presence of noise. Further we develop two algorithms for mining p-patterns based on the order in which the aforementioned sub-tasks are performed: the period-first algorithm and the association-first algorithm. Our results show that the association-first algorithm has a higher tolerance to noise; the period-first algorithm is more computationally efficient and provides flexibility as to the specification of support levels. In addition, we apply the period-first algorithm to mining data collected from two production computer networks, a process that led to several actionable insights.","PeriodicalId":431818,"journal":{"name":"Proceedings 17th International Conference on Data Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"279","resultStr":"{\"title\":\"Mining partially periodic event patterns with unknown periods\",\"authors\":\"Sheng Ma, J. Hellerstein\",\"doi\":\"10.1109/ICDE.2001.914829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Periodic behavior is common in real-world applications. However in many cases, periodicities are partial in that they are present only intermittently. The authors study such intermittent patterns, which they refer to as p-patterns. The formulation of p-patterns takes into account imprecise time information (e.g., due to unsynchronized clocks in distributed environments), noisy data (e.g., due to extraneous events), and shifts in phase and/or periods. We structure mining for p-patterns as two sub-tasks: (1) finding the periods of p-patterns and (2) mining temporal associations. For (2), a level-wise algorithm is used. For (1), we develop a novel approach based on a chi-squared test, and study its performance in the presence of noise. Further we develop two algorithms for mining p-patterns based on the order in which the aforementioned sub-tasks are performed: the period-first algorithm and the association-first algorithm. Our results show that the association-first algorithm has a higher tolerance to noise; the period-first algorithm is more computationally efficient and provides flexibility as to the specification of support levels. In addition, we apply the period-first algorithm to mining data collected from two production computer networks, a process that led to several actionable insights.\",\"PeriodicalId\":431818,\"journal\":{\"name\":\"Proceedings 17th International Conference on Data Engineering\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"279\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 17th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2001.914829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2001.914829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining partially periodic event patterns with unknown periods
Periodic behavior is common in real-world applications. However in many cases, periodicities are partial in that they are present only intermittently. The authors study such intermittent patterns, which they refer to as p-patterns. The formulation of p-patterns takes into account imprecise time information (e.g., due to unsynchronized clocks in distributed environments), noisy data (e.g., due to extraneous events), and shifts in phase and/or periods. We structure mining for p-patterns as two sub-tasks: (1) finding the periods of p-patterns and (2) mining temporal associations. For (2), a level-wise algorithm is used. For (1), we develop a novel approach based on a chi-squared test, and study its performance in the presence of noise. Further we develop two algorithms for mining p-patterns based on the order in which the aforementioned sub-tasks are performed: the period-first algorithm and the association-first algorithm. Our results show that the association-first algorithm has a higher tolerance to noise; the period-first algorithm is more computationally efficient and provides flexibility as to the specification of support levels. In addition, we apply the period-first algorithm to mining data collected from two production computer networks, a process that led to several actionable insights.