卫星数据的大规模并行断口检测

M. V. Mehren, F. Gieseke, J. Verbesselt, Sabina Roşca, S. Horion, A. Zeileis
{"title":"卫星数据的大规模并行断口检测","authors":"M. V. Mehren, F. Gieseke, J. Verbesselt, Sabina Roşca, S. Horion, A. Zeileis","doi":"10.1145/3221269.3223032","DOIUrl":null,"url":null,"abstract":"The field of remote sensing is nowadays faced with huge amounts of data. While this offers a variety of exciting research opportunities, it also yields significant challenges regarding both computation time and space requirements. In practice, the sheer data volumes render existing approaches too slow for processing and analyzing all the available data. This work aims at accelerating BFAST, one of the state-of-the-art methods for break detection given satellite image time series. In particular, we propose a massively-parallel implementation for BFAST that can effectively make use of modern parallel compute devices such as GPUs. Our experimental evaluation shows that the proposed GPU implementation is up to four orders of magnitude faster than the existing publicly available implementation and up to ten times faster than a corresponding multi-threaded CPU execution. The dramatic decrease in running time renders the analysis of significantly larger datasets possible in seconds or minutes instead of hours or days. We demonstrate the practical benefits of our implementations given both artificial and real datasets.","PeriodicalId":365491,"journal":{"name":"Proceedings of the 30th International Conference on Scientific and Statistical Database Management","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Massively-parallel break detection for satellite data\",\"authors\":\"M. V. Mehren, F. Gieseke, J. Verbesselt, Sabina Roşca, S. Horion, A. Zeileis\",\"doi\":\"10.1145/3221269.3223032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of remote sensing is nowadays faced with huge amounts of data. While this offers a variety of exciting research opportunities, it also yields significant challenges regarding both computation time and space requirements. In practice, the sheer data volumes render existing approaches too slow for processing and analyzing all the available data. This work aims at accelerating BFAST, one of the state-of-the-art methods for break detection given satellite image time series. In particular, we propose a massively-parallel implementation for BFAST that can effectively make use of modern parallel compute devices such as GPUs. Our experimental evaluation shows that the proposed GPU implementation is up to four orders of magnitude faster than the existing publicly available implementation and up to ten times faster than a corresponding multi-threaded CPU execution. The dramatic decrease in running time renders the analysis of significantly larger datasets possible in seconds or minutes instead of hours or days. We demonstrate the practical benefits of our implementations given both artificial and real datasets.\",\"PeriodicalId\":365491,\"journal\":{\"name\":\"Proceedings of the 30th International Conference on Scientific and Statistical Database Management\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3221269.3223032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3221269.3223032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

遥感领域目前面临着海量的数据。虽然这提供了各种令人兴奋的研究机会,但它也产生了关于计算时间和空间要求的重大挑战。在实践中,庞大的数据量使得现有方法处理和分析所有可用数据的速度太慢。这项工作旨在加速BFAST,最先进的方法之一的断裂检测给定的卫星图像时间序列。特别是,我们提出了一种大规模并行的BFAST实现,可以有效地利用现代并行计算设备,如gpu。我们的实验评估表明,提议的GPU实现比现有的公开实现快4个数量级,比相应的多线程CPU执行快10倍。运行时间的大幅减少使得分析更大的数据集可以在几秒钟或几分钟内完成,而不是几小时或几天。我们给出了人工数据集和真实数据集,展示了我们的实现的实际好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Massively-parallel break detection for satellite data
The field of remote sensing is nowadays faced with huge amounts of data. While this offers a variety of exciting research opportunities, it also yields significant challenges regarding both computation time and space requirements. In practice, the sheer data volumes render existing approaches too slow for processing and analyzing all the available data. This work aims at accelerating BFAST, one of the state-of-the-art methods for break detection given satellite image time series. In particular, we propose a massively-parallel implementation for BFAST that can effectively make use of modern parallel compute devices such as GPUs. Our experimental evaluation shows that the proposed GPU implementation is up to four orders of magnitude faster than the existing publicly available implementation and up to ten times faster than a corresponding multi-threaded CPU execution. The dramatic decrease in running time renders the analysis of significantly larger datasets possible in seconds or minutes instead of hours or days. We demonstrate the practical benefits of our implementations given both artificial and real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信