核聚变:能量的圣杯

Q. Haider
{"title":"核聚变:能量的圣杯","authors":"Q. Haider","doi":"10.5772/INTECHOPEN.82335","DOIUrl":null,"url":null,"abstract":"The declining reserves of fossil fuels and their detrimental effects on the environment have thrust nuclear power based on fission reaction into the limelight as a promising option to energy-starved economies around the world. However, the 1986 Chernobyl and 2011 Fukushima accidents have heightened our fears about nuclear technology ’ s ability to provide a safe way of generating clean power. There is another kind of nuclear energy that has been powering the Sun and stars since their formation. It is nuclear fusion — a process in which two lighter nuclei, typically isotopes of hydrogen, combine together under conditions of extreme pressure and temperature to form a heavier nucleus. In this chapter, harnessing the energy produced in nuclear fusion reaction in a laboratory environment is discussed. Various research programs dedicated to building fusion reactors are also discussed. Emphasis is given on over-coming some of the technological challenges, such as surmounting the Coulomb barrier, confining the plasma, and achieving the “ ignition ” temperature for fusion.","PeriodicalId":149018,"journal":{"name":"Nuclear Fusion - One Noble Goal and a Variety of Scientific and Technological Challenges","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Nuclear Fusion: Holy Grail of Energy\",\"authors\":\"Q. Haider\",\"doi\":\"10.5772/INTECHOPEN.82335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The declining reserves of fossil fuels and their detrimental effects on the environment have thrust nuclear power based on fission reaction into the limelight as a promising option to energy-starved economies around the world. However, the 1986 Chernobyl and 2011 Fukushima accidents have heightened our fears about nuclear technology ’ s ability to provide a safe way of generating clean power. There is another kind of nuclear energy that has been powering the Sun and stars since their formation. It is nuclear fusion — a process in which two lighter nuclei, typically isotopes of hydrogen, combine together under conditions of extreme pressure and temperature to form a heavier nucleus. In this chapter, harnessing the energy produced in nuclear fusion reaction in a laboratory environment is discussed. Various research programs dedicated to building fusion reactors are also discussed. Emphasis is given on over-coming some of the technological challenges, such as surmounting the Coulomb barrier, confining the plasma, and achieving the “ ignition ” temperature for fusion.\",\"PeriodicalId\":149018,\"journal\":{\"name\":\"Nuclear Fusion - One Noble Goal and a Variety of Scientific and Technological Challenges\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion - One Noble Goal and a Variety of Scientific and Technological Challenges\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.82335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion - One Noble Goal and a Variety of Scientific and Technological Challenges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

化石燃料储量的下降及其对环境的有害影响,使基于裂变反应的核能成为世界各地能源匮乏经济体的一个有希望的选择,成为人们关注的焦点。然而,1986年的切尔诺贝利和2011年的福岛核事故加剧了我们对核技术能否提供安全的清洁能源的担忧。自太阳和恒星形成以来,还有另一种核能一直在为它们提供动力。这就是核聚变——两个较轻的原子核,通常是氢的同位素,在极端的压力和温度条件下结合在一起,形成一个较重的原子核的过程。本章讨论了在实验室环境中利用核聚变反应产生的能量。还讨论了致力于建造聚变反应堆的各种研究计划。重点是克服一些技术挑战,如克服库仑势垒,限制等离子体,以及实现聚变的“点火”温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuclear Fusion: Holy Grail of Energy
The declining reserves of fossil fuels and their detrimental effects on the environment have thrust nuclear power based on fission reaction into the limelight as a promising option to energy-starved economies around the world. However, the 1986 Chernobyl and 2011 Fukushima accidents have heightened our fears about nuclear technology ’ s ability to provide a safe way of generating clean power. There is another kind of nuclear energy that has been powering the Sun and stars since their formation. It is nuclear fusion — a process in which two lighter nuclei, typically isotopes of hydrogen, combine together under conditions of extreme pressure and temperature to form a heavier nucleus. In this chapter, harnessing the energy produced in nuclear fusion reaction in a laboratory environment is discussed. Various research programs dedicated to building fusion reactors are also discussed. Emphasis is given on over-coming some of the technological challenges, such as surmounting the Coulomb barrier, confining the plasma, and achieving the “ ignition ” temperature for fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信