利用复调音色模型进行音乐类型分类

Franz A. de Leon, K. Martinez
{"title":"利用复调音色模型进行音乐类型分类","authors":"Franz A. de Leon, K. Martinez","doi":"10.1109/ICDSP.2014.6900697","DOIUrl":null,"url":null,"abstract":"The increasing number of music available for download and subscriptions motivates the need for new solutions in organizing music for consumers. In this paper, several approaches for automatic genre classification of music using polyphonic timbre models are evaluated. Specifically, we compare the performance of the Gaussian mixture model (GMM), the Support Vector Machine (SVM), and the k-nearest neighbor (k-NN). Features are extracted to model the major attributes of timbre such as spectral envelope, range between tonal and noiselike character, and spectrotemporal evolution of sound. To address the scalability problem, a modified filter-and-refine method is integrated with the k-NN classifier. Results show that the 1-NN classifier with filter-and refine method achieved the highest classification accuracy on the GTZAN and ISMIR2004 datasets.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Music genre classification using polyphonic timbre models\",\"authors\":\"Franz A. de Leon, K. Martinez\",\"doi\":\"10.1109/ICDSP.2014.6900697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing number of music available for download and subscriptions motivates the need for new solutions in organizing music for consumers. In this paper, several approaches for automatic genre classification of music using polyphonic timbre models are evaluated. Specifically, we compare the performance of the Gaussian mixture model (GMM), the Support Vector Machine (SVM), and the k-nearest neighbor (k-NN). Features are extracted to model the major attributes of timbre such as spectral envelope, range between tonal and noiselike character, and spectrotemporal evolution of sound. To address the scalability problem, a modified filter-and-refine method is integrated with the k-NN classifier. Results show that the 1-NN classifier with filter-and refine method achieved the highest classification accuracy on the GTZAN and ISMIR2004 datasets.\",\"PeriodicalId\":301856,\"journal\":{\"name\":\"2014 19th International Conference on Digital Signal Processing\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 19th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2014.6900697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

可供下载和订阅的音乐越来越多,促使人们需要新的解决方案来为消费者组织音乐。本文对利用复调音色模型进行音乐类型自动分类的几种方法进行了评价。具体来说,我们比较了高斯混合模型(GMM)、支持向量机(SVM)和k近邻(k-NN)的性能。提取特征来模拟音色的主要属性,如频谱包络、音调和噪声特征之间的范围以及声音的光谱时间演化。为了解决可扩展性问题,将改进的滤波-细化方法与k-NN分类器相结合。结果表明,采用滤波-细化方法的1-NN分类器在GTZAN和ISMIR2004数据集上的分类精度最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Music genre classification using polyphonic timbre models
The increasing number of music available for download and subscriptions motivates the need for new solutions in organizing music for consumers. In this paper, several approaches for automatic genre classification of music using polyphonic timbre models are evaluated. Specifically, we compare the performance of the Gaussian mixture model (GMM), the Support Vector Machine (SVM), and the k-nearest neighbor (k-NN). Features are extracted to model the major attributes of timbre such as spectral envelope, range between tonal and noiselike character, and spectrotemporal evolution of sound. To address the scalability problem, a modified filter-and-refine method is integrated with the k-NN classifier. Results show that the 1-NN classifier with filter-and refine method achieved the highest classification accuracy on the GTZAN and ISMIR2004 datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信