挖掘松弛闭子空间簇

ACM SE '10 Pub Date : 2010-04-15 DOI:10.1145/1900008.1900032
Erich A. Peterson, P. Tang
{"title":"挖掘松弛闭子空间簇","authors":"Erich A. Peterson, P. Tang","doi":"10.1145/1900008.1900032","DOIUrl":null,"url":null,"abstract":"This paper defines and discusses a new problem in the area of subspace clustering. It defines the problem of mining closed subspace clusters. This new concept allows for the culling of more high quality and less redundant clusters, than that of traditional clustering algorithms. In addition, our method contains a relaxation parameter, which allows for the classification of qualifying clusters into mutually exclusive bins of varying quality---extending the problem to mining relaxed closed subspace clusters. These concepts culminate in a new algorithm called Relaxed Closed Subspace Clustering (RCSC).","PeriodicalId":333104,"journal":{"name":"ACM SE '10","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining relaxed closed subspace clusters\",\"authors\":\"Erich A. Peterson, P. Tang\",\"doi\":\"10.1145/1900008.1900032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper defines and discusses a new problem in the area of subspace clustering. It defines the problem of mining closed subspace clusters. This new concept allows for the culling of more high quality and less redundant clusters, than that of traditional clustering algorithms. In addition, our method contains a relaxation parameter, which allows for the classification of qualifying clusters into mutually exclusive bins of varying quality---extending the problem to mining relaxed closed subspace clusters. These concepts culminate in a new algorithm called Relaxed Closed Subspace Clustering (RCSC).\",\"PeriodicalId\":333104,\"journal\":{\"name\":\"ACM SE '10\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SE '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1900008.1900032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SE '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1900008.1900032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文定义并讨论了子空间聚类领域中的一个新问题。它定义了封闭子空间簇的挖掘问题。与传统的聚类算法相比,这个新概念允许选择更高质量和更少冗余的聚类。此外,我们的方法包含一个松弛参数,允许将符合条件的簇分类到不同质量的互斥箱中——将问题扩展到挖掘松弛封闭子空间簇。这些概念最终形成了一种新的算法,称为松弛闭子空间聚类(RCSC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining relaxed closed subspace clusters
This paper defines and discusses a new problem in the area of subspace clustering. It defines the problem of mining closed subspace clusters. This new concept allows for the culling of more high quality and less redundant clusters, than that of traditional clustering algorithms. In addition, our method contains a relaxation parameter, which allows for the classification of qualifying clusters into mutually exclusive bins of varying quality---extending the problem to mining relaxed closed subspace clusters. These concepts culminate in a new algorithm called Relaxed Closed Subspace Clustering (RCSC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信