基于改进k均值聚类模型的微阵列数据

R. Suresh, K. Dinakaran, P. Valarmathie
{"title":"基于改进k均值聚类模型的微阵列数据","authors":"R. Suresh, K. Dinakaran, P. Valarmathie","doi":"10.1109/ICIME.2009.53","DOIUrl":null,"url":null,"abstract":"Large amount of gene expression data obtained from Microarray technologies should be analyzed and interpreted in appropriate manner for the benefit of researchers. Using microarray techniques one can monitor the expressions levels of thousands of genes simultaneously. One challenging problem in gene expression analysis is to define the number of clusters. This can be done by some efficient clustering techniques; the Model Based Modified k-means method introduced in this paper could find the exact number of clusters and overcome the problems in the existing k-means clustering technique. Our experimental results show the efficiency of our method by calculating and comparing the sum of squares with different k values.","PeriodicalId":445284,"journal":{"name":"2009 International Conference on Information Management and Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Model Based Modified K-Means Clustering for Microarray Data\",\"authors\":\"R. Suresh, K. Dinakaran, P. Valarmathie\",\"doi\":\"10.1109/ICIME.2009.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large amount of gene expression data obtained from Microarray technologies should be analyzed and interpreted in appropriate manner for the benefit of researchers. Using microarray techniques one can monitor the expressions levels of thousands of genes simultaneously. One challenging problem in gene expression analysis is to define the number of clusters. This can be done by some efficient clustering techniques; the Model Based Modified k-means method introduced in this paper could find the exact number of clusters and overcome the problems in the existing k-means clustering technique. Our experimental results show the efficiency of our method by calculating and comparing the sum of squares with different k values.\",\"PeriodicalId\":445284,\"journal\":{\"name\":\"2009 International Conference on Information Management and Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Information Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIME.2009.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Information Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIME.2009.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

从微阵列技术中获得的大量基因表达数据需要以适当的方式进行分析和解释,以使研究人员受益。使用微阵列技术可以同时监测数千个基因的表达水平。基因表达分析中一个具有挑战性的问题是如何确定簇的数量。这可以通过一些有效的聚类技术来实现;本文提出的基于模型的改进k-means聚类方法能够准确地找到聚类的数量,克服了现有k-means聚类技术存在的问题。通过计算和比较不同k值的平方和,实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Based Modified K-Means Clustering for Microarray Data
Large amount of gene expression data obtained from Microarray technologies should be analyzed and interpreted in appropriate manner for the benefit of researchers. Using microarray techniques one can monitor the expressions levels of thousands of genes simultaneously. One challenging problem in gene expression analysis is to define the number of clusters. This can be done by some efficient clustering techniques; the Model Based Modified k-means method introduced in this paper could find the exact number of clusters and overcome the problems in the existing k-means clustering technique. Our experimental results show the efficiency of our method by calculating and comparing the sum of squares with different k values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信