概率潮流中线性和非线性依赖的离散随机变量建模

A. C. Melhorn, J. Taylor
{"title":"概率潮流中线性和非线性依赖的离散随机变量建模","authors":"A. C. Melhorn, J. Taylor","doi":"10.1109/PESGM48719.2022.9916896","DOIUrl":null,"url":null,"abstract":"A majority of probabilistic load flow studies assume independence or arbitrarily set linear correlation coefficients between the various loads and other inputs on the distribution system. These assumptions may not be applicable to the real world. A methodology is proposed that can model continuous and discrete random variables considering both linear and non-linear dependence through several transformations and inverse transform sampling. The methodology is validated looking at the summation of two random variables and a probabilistic load flow analysis of a residential distribution system with 50% penetration of electric vehicles. This paper hopes to continue the discussion and push for future research in understanding dependence between system inputs and its effects on distribution systems, and how to apply this knowledge in future studies.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Discrete Random Variables with Linear and Nonlinear Dependence for Probabilistic Load Flow\",\"authors\":\"A. C. Melhorn, J. Taylor\",\"doi\":\"10.1109/PESGM48719.2022.9916896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A majority of probabilistic load flow studies assume independence or arbitrarily set linear correlation coefficients between the various loads and other inputs on the distribution system. These assumptions may not be applicable to the real world. A methodology is proposed that can model continuous and discrete random variables considering both linear and non-linear dependence through several transformations and inverse transform sampling. The methodology is validated looking at the summation of two random variables and a probabilistic load flow analysis of a residential distribution system with 50% penetration of electric vehicles. This paper hopes to continue the discussion and push for future research in understanding dependence between system inputs and its effects on distribution systems, and how to apply this knowledge in future studies.\",\"PeriodicalId\":388672,\"journal\":{\"name\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM48719.2022.9916896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9916896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数的概率潮流研究假设各种负荷和配电系统的其他输入之间是独立的或任意设置线性相关系数。这些假设可能不适用于现实世界。提出了一种可以同时考虑线性和非线性依赖的连续和离散随机变量的建模方法。该方法通过两个随机变量的总和和电动汽车渗透率为50%的住宅配电系统的概率负荷流分析进行了验证。本文希望继续讨论和推动未来的研究,以理解系统输入及其对配电系统的影响之间的依赖关系,以及如何在未来的研究中应用这些知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Discrete Random Variables with Linear and Nonlinear Dependence for Probabilistic Load Flow
A majority of probabilistic load flow studies assume independence or arbitrarily set linear correlation coefficients between the various loads and other inputs on the distribution system. These assumptions may not be applicable to the real world. A methodology is proposed that can model continuous and discrete random variables considering both linear and non-linear dependence through several transformations and inverse transform sampling. The methodology is validated looking at the summation of two random variables and a probabilistic load flow analysis of a residential distribution system with 50% penetration of electric vehicles. This paper hopes to continue the discussion and push for future research in understanding dependence between system inputs and its effects on distribution systems, and how to apply this knowledge in future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信