考虑风助转子影响的船舶经济航路和船舶运行优化方法

Wen-Juan Sun, Liu Xiyang, Li Yang
{"title":"考虑风助转子影响的船舶经济航路和船舶运行优化方法","authors":"Wen-Juan Sun, Liu Xiyang, Li Yang","doi":"10.1115/omae2020-18776","DOIUrl":null,"url":null,"abstract":"\n With the increasingly strict regulations for energy saving and emission reduction technology of ships, minimizing fuel cost is one of the most critical issues in the design and operation of merchant ships. A method to reduce the fuel cost for merchant ship is to select an economical route based on the real-time meteorological environment and weather forecasting data. So far, numerous ship routing strategies have been proposed with the development of weather routing system. More recently, many wind-assisted devices like rotors, wind sails, etc. have been investigated and designed to utilize the renewable wind energy. With the equipment of wind-assisted rotors, the optimization of ship route becomes more important because the effect of this wind-assisted device highly depends on the local wind field along the ship route. In this paper, an improved optimization strategy with the combination of the A* algorithm and a realtime optimizer has been proposed to determinate the optimal ship route and ship operations including ship heading, propeller’s rpm and rotor’s rpm. The real-time information for the weather conditions, ocean climate and sea states are obtained from European Center for Medium-range Weather Forecasts and the ship performance is evaluated by data-driven models. Finally, the proposed method was applied to test cases of ships operating in Pacific route and Indian Ocean route and the results show that the total fuel consumption could be reduced compared to the minimum distance route.","PeriodicalId":427872,"journal":{"name":"Volume 6A: Ocean Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimization Method for Economical Ship-Routing and Ship Operation Considering the Effect of Wind-Assisted Rotors\",\"authors\":\"Wen-Juan Sun, Liu Xiyang, Li Yang\",\"doi\":\"10.1115/omae2020-18776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With the increasingly strict regulations for energy saving and emission reduction technology of ships, minimizing fuel cost is one of the most critical issues in the design and operation of merchant ships. A method to reduce the fuel cost for merchant ship is to select an economical route based on the real-time meteorological environment and weather forecasting data. So far, numerous ship routing strategies have been proposed with the development of weather routing system. More recently, many wind-assisted devices like rotors, wind sails, etc. have been investigated and designed to utilize the renewable wind energy. With the equipment of wind-assisted rotors, the optimization of ship route becomes more important because the effect of this wind-assisted device highly depends on the local wind field along the ship route. In this paper, an improved optimization strategy with the combination of the A* algorithm and a realtime optimizer has been proposed to determinate the optimal ship route and ship operations including ship heading, propeller’s rpm and rotor’s rpm. The real-time information for the weather conditions, ocean climate and sea states are obtained from European Center for Medium-range Weather Forecasts and the ship performance is evaluated by data-driven models. Finally, the proposed method was applied to test cases of ships operating in Pacific route and Indian Ocean route and the results show that the total fuel consumption could be reduced compared to the minimum distance route.\",\"PeriodicalId\":427872,\"journal\":{\"name\":\"Volume 6A: Ocean Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6A: Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2020-18776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6A: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着船舶节能减排技术法规的日益严格,燃油成本最小化是商船设计和运营中最关键的问题之一。根据实时气象环境和天气预报数据选择经济的航线是降低商船燃油成本的一种方法。到目前为止,随着天气航路系统的发展,提出了许多船舶航路策略。最近,许多风力辅助设备,如旋翼,风帆等,已经研究和设计利用可再生风能。随着风助转子的装备,由于风助装置的效果高度依赖于船舶航路沿线的局部风场,因此船舶航路的优化变得更加重要。本文提出了一种改进的A*算法与实时优化器相结合的优化策略,以确定包括船舶航向、螺旋桨转速和转子转速在内的最优船舶航线和船舶作业。天气状况、海洋气候和海况的实时信息来自欧洲中期天气预报中心,船舶性能通过数据驱动模型进行评估。最后,将该方法应用于太平洋航线和印度洋航线船舶的试验案例,结果表明,与最小距离航线相比,该方法可以降低总燃油消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimization Method for Economical Ship-Routing and Ship Operation Considering the Effect of Wind-Assisted Rotors
With the increasingly strict regulations for energy saving and emission reduction technology of ships, minimizing fuel cost is one of the most critical issues in the design and operation of merchant ships. A method to reduce the fuel cost for merchant ship is to select an economical route based on the real-time meteorological environment and weather forecasting data. So far, numerous ship routing strategies have been proposed with the development of weather routing system. More recently, many wind-assisted devices like rotors, wind sails, etc. have been investigated and designed to utilize the renewable wind energy. With the equipment of wind-assisted rotors, the optimization of ship route becomes more important because the effect of this wind-assisted device highly depends on the local wind field along the ship route. In this paper, an improved optimization strategy with the combination of the A* algorithm and a realtime optimizer has been proposed to determinate the optimal ship route and ship operations including ship heading, propeller’s rpm and rotor’s rpm. The real-time information for the weather conditions, ocean climate and sea states are obtained from European Center for Medium-range Weather Forecasts and the ship performance is evaluated by data-driven models. Finally, the proposed method was applied to test cases of ships operating in Pacific route and Indian Ocean route and the results show that the total fuel consumption could be reduced compared to the minimum distance route.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信