热蒸发法制备纳米镓

G. Kozhemyakin, Y. Belov, М. K. Trufanova, О. Е. Bryl
{"title":"热蒸发法制备纳米镓","authors":"G. Kozhemyakin, Y. Belov, М. K. Trufanova, О. Е. Bryl","doi":"10.30791/0015-3214-2021-2-56-62","DOIUrl":null,"url":null,"abstract":"The conditions have been developed for obtaining of gallium (Ga) nanoparticles by thermal evaporation method in an argon atmosphere on glass carbon substrates. Ga particles research was carried out by the developed intelligent analysis method of the images of the micrographs obtained under a scanning electron microscope. It is shown, that temperature of glass carbon substrate and the condensation time of the melt determine number of the nanoparticles and microparticles. Ga nanoparticles with 10 – 100 nm sizes and microparticles with up to 500 nm sizes were formed on the substrates with the condensation time of 10 – 20 s. Ga nanoparticles had a shape close to spherical, and their amount increased with the increase of the condensation time. The increase of the substrate temperature from 118 to 124 °С provided the decrease of 20 % in the average sizes of most Ga nanoparticles and the increase of their number by a factor of 7 – 20.","PeriodicalId":366423,"journal":{"name":"Physics and Chemistry of Materials Treatment","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of gallium nanoparticles by thermal evaporation method\",\"authors\":\"G. Kozhemyakin, Y. Belov, М. K. Trufanova, О. Е. Bryl\",\"doi\":\"10.30791/0015-3214-2021-2-56-62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conditions have been developed for obtaining of gallium (Ga) nanoparticles by thermal evaporation method in an argon atmosphere on glass carbon substrates. Ga particles research was carried out by the developed intelligent analysis method of the images of the micrographs obtained under a scanning electron microscope. It is shown, that temperature of glass carbon substrate and the condensation time of the melt determine number of the nanoparticles and microparticles. Ga nanoparticles with 10 – 100 nm sizes and microparticles with up to 500 nm sizes were formed on the substrates with the condensation time of 10 – 20 s. Ga nanoparticles had a shape close to spherical, and their amount increased with the increase of the condensation time. The increase of the substrate temperature from 118 to 124 °С provided the decrease of 20 % in the average sizes of most Ga nanoparticles and the increase of their number by a factor of 7 – 20.\",\"PeriodicalId\":366423,\"journal\":{\"name\":\"Physics and Chemistry of Materials Treatment\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Materials Treatment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30791/0015-3214-2021-2-56-62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Materials Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30791/0015-3214-2021-2-56-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了在氩气气氛下用热蒸发法制备纳米镓的条件。利用开发的智能分析方法对扫描电子显微镜下获得的显微图像进行了Ga颗粒的研究。结果表明,玻璃碳衬底温度和熔体凝结时间决定了纳米粒子和微粒子的数量。在10 ~ 20 s的缩聚时间内,在衬底上形成了10 ~ 100 nm尺寸的Ga纳米颗粒和500 nm尺寸的Ga微粒。Ga纳米颗粒的形状接近球形,且随着缩聚时间的增加,其数量增加。当衬底温度从118°升高到124°С时,大多数Ga纳米颗粒的平均尺寸减小了20%,其数量增加了7 - 20倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Formation of gallium nanoparticles by thermal evaporation method
The conditions have been developed for obtaining of gallium (Ga) nanoparticles by thermal evaporation method in an argon atmosphere on glass carbon substrates. Ga particles research was carried out by the developed intelligent analysis method of the images of the micrographs obtained under a scanning electron microscope. It is shown, that temperature of glass carbon substrate and the condensation time of the melt determine number of the nanoparticles and microparticles. Ga nanoparticles with 10 – 100 nm sizes and microparticles with up to 500 nm sizes were formed on the substrates with the condensation time of 10 – 20 s. Ga nanoparticles had a shape close to spherical, and their amount increased with the increase of the condensation time. The increase of the substrate temperature from 118 to 124 °С provided the decrease of 20 % in the average sizes of most Ga nanoparticles and the increase of their number by a factor of 7 – 20.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信