{"title":"采用SBT技术在180nm CMOS技术下设计了一种低功耗施密特触发器","authors":"A. Suresh","doi":"10.1109/ICACCCT.2014.7019142","DOIUrl":null,"url":null,"abstract":"This paper presents the effect of source voltage and load capacitance on the performance of CMOS Schmitt Trigger circuit with self-bias transistor (SBT) technique which was used to reduce power. The CMOS Schmitt Trigger circuit was modified by designing the transistors aspect ratio on the basis of conventional CMOS Schmitt Trigger and it is implemented using CADENCE Virtuoso in Spectra Simulator using UMC-180nm technology for different modified design. Results are compared in terms of propagation delay, power, and energy-delay product. From the simulation results, the modified CMOS Schmitt Trigger was able to operate between 0.8V to 1.5V voltage range.","PeriodicalId":239918,"journal":{"name":"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A low power Schmitt Trigger design using SBT technique in 180nm CMOS technology\",\"authors\":\"A. Suresh\",\"doi\":\"10.1109/ICACCCT.2014.7019142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the effect of source voltage and load capacitance on the performance of CMOS Schmitt Trigger circuit with self-bias transistor (SBT) technique which was used to reduce power. The CMOS Schmitt Trigger circuit was modified by designing the transistors aspect ratio on the basis of conventional CMOS Schmitt Trigger and it is implemented using CADENCE Virtuoso in Spectra Simulator using UMC-180nm technology for different modified design. Results are compared in terms of propagation delay, power, and energy-delay product. From the simulation results, the modified CMOS Schmitt Trigger was able to operate between 0.8V to 1.5V voltage range.\",\"PeriodicalId\":239918,\"journal\":{\"name\":\"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCCT.2014.7019142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCCT.2014.7019142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low power Schmitt Trigger design using SBT technique in 180nm CMOS technology
This paper presents the effect of source voltage and load capacitance on the performance of CMOS Schmitt Trigger circuit with self-bias transistor (SBT) technique which was used to reduce power. The CMOS Schmitt Trigger circuit was modified by designing the transistors aspect ratio on the basis of conventional CMOS Schmitt Trigger and it is implemented using CADENCE Virtuoso in Spectra Simulator using UMC-180nm technology for different modified design. Results are compared in terms of propagation delay, power, and energy-delay product. From the simulation results, the modified CMOS Schmitt Trigger was able to operate between 0.8V to 1.5V voltage range.