基于动态掩码的LSB隐写检测

Xiangyang Luo, B. Liu, Fenlin Liu
{"title":"基于动态掩码的LSB隐写检测","authors":"Xiangyang Luo, B. Liu, Fenlin Liu","doi":"10.1109/ISDA.2005.37","DOIUrl":null,"url":null,"abstract":"This paper presents a dynamic regular groups steganalysis (DRS) algorithm to detect LSB steganography. This algorithm dynamically selects an appropriate mask for each image to reduce the initial bias, and estimates' the LSB embedding message ratio by constructing equations with the statistics of regular groups in image. Experimental results show that this algorithm is more accurate and has a lower missing rate and false1 alarm rate than the conventional RS method and some other powerful steganalysis approaches present recently.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Detecting LSB steganography based on dynamic masks\",\"authors\":\"Xiangyang Luo, B. Liu, Fenlin Liu\",\"doi\":\"10.1109/ISDA.2005.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a dynamic regular groups steganalysis (DRS) algorithm to detect LSB steganography. This algorithm dynamically selects an appropriate mask for each image to reduce the initial bias, and estimates' the LSB embedding message ratio by constructing equations with the statistics of regular groups in image. Experimental results show that this algorithm is more accurate and has a lower missing rate and false1 alarm rate than the conventional RS method and some other powerful steganalysis approaches present recently.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

提出了一种检测LSB隐写的动态正则群隐写分析算法。该算法为每张图像动态选择合适的掩码以减小初始偏差,并利用图像中规则组的统计量构造方程来估计LSB嵌入消息的比率。实验结果表明,该算法比传统的RS方法和目前一些功能强大的隐写分析方法具有更高的准确率和更低的缺失率和虚警率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting LSB steganography based on dynamic masks
This paper presents a dynamic regular groups steganalysis (DRS) algorithm to detect LSB steganography. This algorithm dynamically selects an appropriate mask for each image to reduce the initial bias, and estimates' the LSB embedding message ratio by constructing equations with the statistics of regular groups in image. Experimental results show that this algorithm is more accurate and has a lower missing rate and false1 alarm rate than the conventional RS method and some other powerful steganalysis approaches present recently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信