基于强化学习的神经网络架构优化学习策略

Raghav Vadhera, M. Huber
{"title":"基于强化学习的神经网络架构优化学习策略","authors":"Raghav Vadhera, M. Huber","doi":"10.32473/flairs.36.133380","DOIUrl":null,"url":null,"abstract":"Deep learning systems tend to be very sensitive to the specific network architecture both in terms of learning ability and performance of the learned solution. This, together with the difficulty of tuning neural network architectures leads to a need for automatic network optimization. Previous work largely optimizes a network for one specific problem using architecture search, requiring significant amounts of time training different architectures during optimization. To address this and to open up the potential for transfer across tasks, this paper presents a novel approach that uses Reinforcement Learning to learn a policy for network optimization in a derived architecture embedding space that incrementally optimizes the network for the given problem. By utilizing policy learning and an abstract problem embedding, this approach brings the promise of transfer of the policy across problems and thus the potential optimization of networks for new problems without the need for excessive additional training. For an initial evaluation of the base capabilities, experiments for a standard classification problem are performed in this paper, showing the ability of the approach to optimize the architecture for a specific problem within a given rang of fully connected networks, and indicating its potential for learning effective policies to automatically improve network architectures.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Policies for Neural Network Architecture Optimization Using Reinforcement Learning\",\"authors\":\"Raghav Vadhera, M. Huber\",\"doi\":\"10.32473/flairs.36.133380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning systems tend to be very sensitive to the specific network architecture both in terms of learning ability and performance of the learned solution. This, together with the difficulty of tuning neural network architectures leads to a need for automatic network optimization. Previous work largely optimizes a network for one specific problem using architecture search, requiring significant amounts of time training different architectures during optimization. To address this and to open up the potential for transfer across tasks, this paper presents a novel approach that uses Reinforcement Learning to learn a policy for network optimization in a derived architecture embedding space that incrementally optimizes the network for the given problem. By utilizing policy learning and an abstract problem embedding, this approach brings the promise of transfer of the policy across problems and thus the potential optimization of networks for new problems without the need for excessive additional training. For an initial evaluation of the base capabilities, experiments for a standard classification problem are performed in this paper, showing the ability of the approach to optimize the architecture for a specific problem within a given rang of fully connected networks, and indicating its potential for learning effective policies to automatically improve network architectures.\",\"PeriodicalId\":302103,\"journal\":{\"name\":\"The International FLAIRS Conference Proceedings\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International FLAIRS Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32473/flairs.36.133380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习系统在学习能力和学习解决方案的性能方面往往对特定的网络架构非常敏感。这一点,再加上神经网络结构调整的难度,导致了对自动网络优化的需求。以前的工作主要是使用架构搜索来优化一个特定问题的网络,在优化过程中需要大量的时间来训练不同的架构。为了解决这个问题并打开跨任务转移的潜力,本文提出了一种新方法,该方法使用强化学习来学习在派生架构嵌入空间中进行网络优化的策略,该策略可以针对给定问题增量优化网络。通过利用策略学习和抽象问题嵌入,这种方法带来了跨问题转移策略的希望,从而在不需要过多额外训练的情况下对新问题的网络进行潜在的优化。为了对基本能力进行初步评估,本文对一个标准分类问题进行了实验,展示了该方法在给定全连接网络范围内针对特定问题优化体系结构的能力,并表明了其学习有效策略以自动改进网络体系结构的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Policies for Neural Network Architecture Optimization Using Reinforcement Learning
Deep learning systems tend to be very sensitive to the specific network architecture both in terms of learning ability and performance of the learned solution. This, together with the difficulty of tuning neural network architectures leads to a need for automatic network optimization. Previous work largely optimizes a network for one specific problem using architecture search, requiring significant amounts of time training different architectures during optimization. To address this and to open up the potential for transfer across tasks, this paper presents a novel approach that uses Reinforcement Learning to learn a policy for network optimization in a derived architecture embedding space that incrementally optimizes the network for the given problem. By utilizing policy learning and an abstract problem embedding, this approach brings the promise of transfer of the policy across problems and thus the potential optimization of networks for new problems without the need for excessive additional training. For an initial evaluation of the base capabilities, experiments for a standard classification problem are performed in this paper, showing the ability of the approach to optimize the architecture for a specific problem within a given rang of fully connected networks, and indicating its potential for learning effective policies to automatically improve network architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信