鲁棒色彩索引

N. Sebe, M. Lew
{"title":"鲁棒色彩索引","authors":"N. Sebe, M. Lew","doi":"10.1145/319463.319615","DOIUrl":null,"url":null,"abstract":"In content based image retrieval, color indexing is one of the most prevalent retrieval methods. In literature, most of the attention has been focussed on the color model with little or no consideration of the noise models. In this paper we investigate the problem of color indexing from a maximum likelihood perspective. We take into account the color model, the noise distribution, and the quantization of the color features. Furthermore, from the real noise distribution we derive a distortion measure, which consistently provides improved accuracy. Our investigation concludes with results on a real stock photography database, consisting of 11,000 color images.","PeriodicalId":265329,"journal":{"name":"MULTIMEDIA '99","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust color indexing\",\"authors\":\"N. Sebe, M. Lew\",\"doi\":\"10.1145/319463.319615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In content based image retrieval, color indexing is one of the most prevalent retrieval methods. In literature, most of the attention has been focussed on the color model with little or no consideration of the noise models. In this paper we investigate the problem of color indexing from a maximum likelihood perspective. We take into account the color model, the noise distribution, and the quantization of the color features. Furthermore, from the real noise distribution we derive a distortion measure, which consistently provides improved accuracy. Our investigation concludes with results on a real stock photography database, consisting of 11,000 color images.\",\"PeriodicalId\":265329,\"journal\":{\"name\":\"MULTIMEDIA '99\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MULTIMEDIA '99\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/319463.319615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '99","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/319463.319615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在基于内容的图像检索中,颜色索引是最常用的检索方法之一。在文献中,大部分注意力都集中在颜色模型上,很少或没有考虑噪声模型。本文从极大似然的角度研究了颜色标引问题。我们考虑了颜色模型、噪声分布和颜色特征的量化。此外,从真实的噪声分布中,我们得到了一个失真测量,它始终提供了更高的精度。我们的调查得出了一个真实的库存摄影数据库的结果,该数据库包含11,000张彩色图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust color indexing
In content based image retrieval, color indexing is one of the most prevalent retrieval methods. In literature, most of the attention has been focussed on the color model with little or no consideration of the noise models. In this paper we investigate the problem of color indexing from a maximum likelihood perspective. We take into account the color model, the noise distribution, and the quantization of the color features. Furthermore, from the real noise distribution we derive a distortion measure, which consistently provides improved accuracy. Our investigation concludes with results on a real stock photography database, consisting of 11,000 color images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信