经导管主动脉瓣CTA图像插入区中点定位的U-Net神经网络

Eduardo Mineo, A. Assunção, T. Morais, S.F.C. Camara, H. Ribeiro, J. Sims, C. Nomura
{"title":"经导管主动脉瓣CTA图像插入区中点定位的U-Net神经网络","authors":"Eduardo Mineo, A. Assunção, T. Morais, S.F.C. Camara, H. Ribeiro, J. Sims, C. Nomura","doi":"10.23919/cinc53138.2021.9662743","DOIUrl":null,"url":null,"abstract":"Identifying the insertion zone of transcatheter heart valves can be time-consuming and suffers from variability and reproducibility problems. We present a deep leaning approach in CTA images to locate the midpoint of the insertion zone. A U-Net neural network is implemented to automatically segment the aortic valve on axial projection. The insertion zone midpoint is calculated based on the range of slices with the more concentrated area of activated pixels. We found a very low systematic error with a median computed error of 0.38mm and interquartile range of 0.15 – 0.75mm. The proposed model was shown to be a robust and powerful tool to automatically locate the insertion zone midpoint and we believe it will play a critical role on automated assessment of aortic stenosis.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"U-Net Neural Network for Locating Midpoint of Insertion Zone of Transcatheter Aortic Valves in CTA Images\",\"authors\":\"Eduardo Mineo, A. Assunção, T. Morais, S.F.C. Camara, H. Ribeiro, J. Sims, C. Nomura\",\"doi\":\"10.23919/cinc53138.2021.9662743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying the insertion zone of transcatheter heart valves can be time-consuming and suffers from variability and reproducibility problems. We present a deep leaning approach in CTA images to locate the midpoint of the insertion zone. A U-Net neural network is implemented to automatically segment the aortic valve on axial projection. The insertion zone midpoint is calculated based on the range of slices with the more concentrated area of activated pixels. We found a very low systematic error with a median computed error of 0.38mm and interquartile range of 0.15 – 0.75mm. The proposed model was shown to be a robust and powerful tool to automatically locate the insertion zone midpoint and we believe it will play a critical role on automated assessment of aortic stenosis.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定经导管心脏瓣膜的插入区域可能是耗时的,并且存在可变性和可重复性问题。我们提出了一种在CTA图像中定位插入区域中点的深度学习方法。采用U-Net神经网络实现主动脉瓣轴向投影自动分割。插入区中点是根据激活像素区域更集中的切片范围计算的。我们发现系统误差非常低,计算误差中位数为0.38mm,四分位数范围为0.15 - 0.75mm。该模型是一种功能强大的自动定位插入区中点的工具,我们相信它将在主动脉瓣狭窄的自动评估中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
U-Net Neural Network for Locating Midpoint of Insertion Zone of Transcatheter Aortic Valves in CTA Images
Identifying the insertion zone of transcatheter heart valves can be time-consuming and suffers from variability and reproducibility problems. We present a deep leaning approach in CTA images to locate the midpoint of the insertion zone. A U-Net neural network is implemented to automatically segment the aortic valve on axial projection. The insertion zone midpoint is calculated based on the range of slices with the more concentrated area of activated pixels. We found a very low systematic error with a median computed error of 0.38mm and interquartile range of 0.15 – 0.75mm. The proposed model was shown to be a robust and powerful tool to automatically locate the insertion zone midpoint and we believe it will play a critical role on automated assessment of aortic stenosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信