Emerson Luiz Chiesse da Silva, M. Rosa, K. Fonseca, R. Lüders, N. P. Kozievitch
{"title":"结合k -均值法和复杂网络分析法评价城市交通","authors":"Emerson Luiz Chiesse da Silva, M. Rosa, K. Fonseca, R. Lüders, N. P. Kozievitch","doi":"10.1109/ITSC.2016.7795782","DOIUrl":null,"url":null,"abstract":"Complex networks have been used to model public transportation systems (PTS) considering the relationship between bus lines and bus stops. Previous works focused on statistically characterize either the whole network or their individual bus stops and lines. The present work focused on statistically characterize different regions of a city (Curitiba, Brazil) assuming that a passenger could easily access different unconnected bus stops in a geographic area. K-means algorithm was used to partition the bus stops in (K =) 2 to 40 clusters with similar geographic area. Results showed strong inverse relationship (p < 2 × 10−16 and R2 = 0.74 for K = 40 in a log model) between the degree and the average path length of clustered bus stops. Regarding Curitiba, it revealed well and badly served regions (downtown area, and few suburbs in Southern and Western Curitiba, respectively). Some of these well served regions showed quantitative indication of potential bus congestion. By varying K, city planners could obtained zoomed view of the behavior of their PTS in terms of complex networks metrics.","PeriodicalId":184458,"journal":{"name":"International Conference on Intelligent Transportation Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Combining K-means method and complex network analysis to evaluate city mobility\",\"authors\":\"Emerson Luiz Chiesse da Silva, M. Rosa, K. Fonseca, R. Lüders, N. P. Kozievitch\",\"doi\":\"10.1109/ITSC.2016.7795782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex networks have been used to model public transportation systems (PTS) considering the relationship between bus lines and bus stops. Previous works focused on statistically characterize either the whole network or their individual bus stops and lines. The present work focused on statistically characterize different regions of a city (Curitiba, Brazil) assuming that a passenger could easily access different unconnected bus stops in a geographic area. K-means algorithm was used to partition the bus stops in (K =) 2 to 40 clusters with similar geographic area. Results showed strong inverse relationship (p < 2 × 10−16 and R2 = 0.74 for K = 40 in a log model) between the degree and the average path length of clustered bus stops. Regarding Curitiba, it revealed well and badly served regions (downtown area, and few suburbs in Southern and Western Curitiba, respectively). Some of these well served regions showed quantitative indication of potential bus congestion. By varying K, city planners could obtained zoomed view of the behavior of their PTS in terms of complex networks metrics.\",\"PeriodicalId\":184458,\"journal\":{\"name\":\"International Conference on Intelligent Transportation Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2016.7795782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2016.7795782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combining K-means method and complex network analysis to evaluate city mobility
Complex networks have been used to model public transportation systems (PTS) considering the relationship between bus lines and bus stops. Previous works focused on statistically characterize either the whole network or their individual bus stops and lines. The present work focused on statistically characterize different regions of a city (Curitiba, Brazil) assuming that a passenger could easily access different unconnected bus stops in a geographic area. K-means algorithm was used to partition the bus stops in (K =) 2 to 40 clusters with similar geographic area. Results showed strong inverse relationship (p < 2 × 10−16 and R2 = 0.74 for K = 40 in a log model) between the degree and the average path length of clustered bus stops. Regarding Curitiba, it revealed well and badly served regions (downtown area, and few suburbs in Southern and Western Curitiba, respectively). Some of these well served regions showed quantitative indication of potential bus congestion. By varying K, city planners could obtained zoomed view of the behavior of their PTS in terms of complex networks metrics.