基于支持向量机的缺失数据处理方法

Yang Li-hua, Ni Qing-hua
{"title":"基于支持向量机的缺失数据处理方法","authors":"Yang Li-hua, Ni Qing-hua","doi":"10.1109/ICSSEM.2011.6081198","DOIUrl":null,"url":null,"abstract":"This paper systematically analyzes the causes and the mechanism of missing data, and research the processing method of missing data based on the support vector machine. And the results show that the prediction based on support vector machine method is more desirable than neural network, wavelet network model. And this method can promote and apply in the prediction of missing data to a certain extend.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Based on support vector machine approach to missing data\",\"authors\":\"Yang Li-hua, Ni Qing-hua\",\"doi\":\"10.1109/ICSSEM.2011.6081198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper systematically analyzes the causes and the mechanism of missing data, and research the processing method of missing data based on the support vector machine. And the results show that the prediction based on support vector machine method is more desirable than neural network, wavelet network model. And this method can promote and apply in the prediction of missing data to a certain extend.\",\"PeriodicalId\":406311,\"journal\":{\"name\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on System science, Engineering design and Manufacturing informatization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSEM.2011.6081198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文系统地分析了缺失数据产生的原因和机制,研究了基于支持向量机的缺失数据处理方法。结果表明,基于支持向量机方法的预测效果优于神经网络、小波网络模型。该方法可以在一定程度上促进和应用于缺失数据的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Based on support vector machine approach to missing data
This paper systematically analyzes the causes and the mechanism of missing data, and research the processing method of missing data based on the support vector machine. And the results show that the prediction based on support vector machine method is more desirable than neural network, wavelet network model. And this method can promote and apply in the prediction of missing data to a certain extend.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信