自动驾驶汽车在线轨迹规划的分割高斯过程回归

Pavlo Vlastos, A. Hunter, R. Curry, Carlos Isaac Espinosa Ramirez, G. Elkaim
{"title":"自动驾驶汽车在线轨迹规划的分割高斯过程回归","authors":"Pavlo Vlastos, A. Hunter, R. Curry, Carlos Isaac Espinosa Ramirez, G. Elkaim","doi":"10.23919/ICCAS52745.2021.9649997","DOIUrl":null,"url":null,"abstract":"Gaussian process regression and ordinary kriging are effective methods for spatial estimation, but are generally not used in online trajectory-planning applications for autonomous vehicles. A common use for kriging is spatial estimation for exploration. Kriging is limited by the necessary covariance matrix inversion and its computational complexity of O(n3), where $n$ represents the number of measurements taken in a sparsely-sampled field. Using the Sherman-Morison matrix inversion lemma, the complexity can be reduced to O(n2). This work focuses on further improving the computational time required to conduct spatial estimation with partitioned ordinary kriging (POK) for online trajectory-planning. A recursive algorithm is introduced to quickly subdivide a field for local kriging, reducing the computation time. We show computational time decreases between ordinary kriging with a regular inverse (OK), the iterative inverse ordinary kriging (IIOK), and POK with the iterative inverse method. Computation times are also compared between OK, IIOK, and POK methods for trajectory planning using a highest variance criterion and linear trajectory segments.","PeriodicalId":411064,"journal":{"name":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partitioned Gaussian Process Regression for Online Trajectory Planning for Autonomous Vehicles\",\"authors\":\"Pavlo Vlastos, A. Hunter, R. Curry, Carlos Isaac Espinosa Ramirez, G. Elkaim\",\"doi\":\"10.23919/ICCAS52745.2021.9649997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian process regression and ordinary kriging are effective methods for spatial estimation, but are generally not used in online trajectory-planning applications for autonomous vehicles. A common use for kriging is spatial estimation for exploration. Kriging is limited by the necessary covariance matrix inversion and its computational complexity of O(n3), where $n$ represents the number of measurements taken in a sparsely-sampled field. Using the Sherman-Morison matrix inversion lemma, the complexity can be reduced to O(n2). This work focuses on further improving the computational time required to conduct spatial estimation with partitioned ordinary kriging (POK) for online trajectory-planning. A recursive algorithm is introduced to quickly subdivide a field for local kriging, reducing the computation time. We show computational time decreases between ordinary kriging with a regular inverse (OK), the iterative inverse ordinary kriging (IIOK), and POK with the iterative inverse method. Computation times are also compared between OK, IIOK, and POK methods for trajectory planning using a highest variance criterion and linear trajectory segments.\",\"PeriodicalId\":411064,\"journal\":{\"name\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 21st International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS52745.2021.9649997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS52745.2021.9649997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯过程回归和普通克里格是空间估计的有效方法,但通常不用于自动驾驶汽车的在线轨迹规划应用。克里格法的一个常见用途是用于勘探的空间估计。Kriging受到必要的协方差矩阵反演及其计算复杂度O(n3)的限制,其中$n$表示在稀疏采样场中进行的测量次数。利用sherman - morrison矩阵反演引理,可以将复杂度降低到O(n2)。本研究的重点是进一步改进利用分区普通克里格(POK)进行在线轨迹规划的空间估计所需的计算时间。引入递归算法快速细分局部克里格域,减少了计算时间。我们证明了正则逆普通克里格法(OK)、迭代逆普通克里格法(IIOK)和迭代逆普通克里格法(POK)之间的计算时间减少。在使用最高方差准则和线性轨迹段进行轨迹规划时,还比较了OK、IIOK和POK方法的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partitioned Gaussian Process Regression for Online Trajectory Planning for Autonomous Vehicles
Gaussian process regression and ordinary kriging are effective methods for spatial estimation, but are generally not used in online trajectory-planning applications for autonomous vehicles. A common use for kriging is spatial estimation for exploration. Kriging is limited by the necessary covariance matrix inversion and its computational complexity of O(n3), where $n$ represents the number of measurements taken in a sparsely-sampled field. Using the Sherman-Morison matrix inversion lemma, the complexity can be reduced to O(n2). This work focuses on further improving the computational time required to conduct spatial estimation with partitioned ordinary kriging (POK) for online trajectory-planning. A recursive algorithm is introduced to quickly subdivide a field for local kriging, reducing the computation time. We show computational time decreases between ordinary kriging with a regular inverse (OK), the iterative inverse ordinary kriging (IIOK), and POK with the iterative inverse method. Computation times are also compared between OK, IIOK, and POK methods for trajectory planning using a highest variance criterion and linear trajectory segments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信