Twitter的社交广告分析

Ying Zhang, Xue Zhao, Chao Wang, Ya Wang, Lili Su, Xiaojie Yuan
{"title":"Twitter的社交广告分析","authors":"Ying Zhang, Xue Zhao, Chao Wang, Ya Wang, Lili Su, Xiaojie Yuan","doi":"10.1109/WISA.2014.30","DOIUrl":null,"url":null,"abstract":"Twitter presents a nice opportunity for targeting advertisements that are contextually related to Twitter content. By virtue of the sparse and noisy text makes identifying the tweets for advertising a very hard problem. In this paper, we propose a novel and effective scheme to identify the tweets that can be targeted for advertisements. We firstly construct a multi-source corpus to collect more auxiliary information for advertisability analysis. We then build the LDA-based topic models to obtain the document-word distributions. We extract features according to these distributions and select contributing ones. Finally we train a logistic regression classifier to discriminate the advertisable tweets from unadvertisable ones. Extensive experiments on a representative real-word Twitter dataset demonstrate that our scheme can identify advertisable tweets effectively.","PeriodicalId":366169,"journal":{"name":"2014 11th Web Information System and Application Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Social Advertisability Analysis on Twitter\",\"authors\":\"Ying Zhang, Xue Zhao, Chao Wang, Ya Wang, Lili Su, Xiaojie Yuan\",\"doi\":\"10.1109/WISA.2014.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter presents a nice opportunity for targeting advertisements that are contextually related to Twitter content. By virtue of the sparse and noisy text makes identifying the tweets for advertising a very hard problem. In this paper, we propose a novel and effective scheme to identify the tweets that can be targeted for advertisements. We firstly construct a multi-source corpus to collect more auxiliary information for advertisability analysis. We then build the LDA-based topic models to obtain the document-word distributions. We extract features according to these distributions and select contributing ones. Finally we train a logistic regression classifier to discriminate the advertisable tweets from unadvertisable ones. Extensive experiments on a representative real-word Twitter dataset demonstrate that our scheme can identify advertisable tweets effectively.\",\"PeriodicalId\":366169,\"journal\":{\"name\":\"2014 11th Web Information System and Application Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th Web Information System and Application Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2014.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Web Information System and Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2014.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Twitter为定位与Twitter内容相关的广告提供了一个很好的机会。由于文本的稀疏和噪声使得识别广告推文成为一个非常困难的问题。在本文中,我们提出了一种新颖而有效的方案来识别可以作为广告目标的推文。首先构建多源语料库,为广告性分析收集更多的辅助信息。然后,我们构建基于lda的主题模型来获得文档-单词分布。我们根据这些分布提取特征并选择有贡献的特征。最后,我们训练了一个逻辑回归分类器来区分可广告推文和不可广告推文。在一个具有代表性的真实Twitter数据集上的大量实验表明,我们的方案可以有效地识别可广告推文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Social Advertisability Analysis on Twitter
Twitter presents a nice opportunity for targeting advertisements that are contextually related to Twitter content. By virtue of the sparse and noisy text makes identifying the tweets for advertising a very hard problem. In this paper, we propose a novel and effective scheme to identify the tweets that can be targeted for advertisements. We firstly construct a multi-source corpus to collect more auxiliary information for advertisability analysis. We then build the LDA-based topic models to obtain the document-word distributions. We extract features according to these distributions and select contributing ones. Finally we train a logistic regression classifier to discriminate the advertisable tweets from unadvertisable ones. Extensive experiments on a representative real-word Twitter dataset demonstrate that our scheme can identify advertisable tweets effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信