{"title":"广义lu -模糊导数与模糊微分方程","authors":"Luciano Stefanini","doi":"10.1109/FUZZY.2007.4295453","DOIUrl":null,"url":null,"abstract":"The generalized differentiability of a fuzzy-number-valued function of a real variable, as recently introduced by Bede and Gal (Fuzzy Sets and Systems, vol. 151, 2005), can be expressed by first defining a generalized Hukuhara difference and using it for the differentiability; to do so, the basic elements are the lower and upper functions which characterize the level-cuts of the fuzzy quantities i.e. functions that are monotonic over [0,1]. Using this fact, we present a (parametric) representation of fuzzy numbers and its application to the solution of fuzzy differential (initial value) equations (FDE). The representation uses a finite decomposition of the membership interval [0,1] and models the level-cuts of fuzzy numbers and fuzzy functions to obtain the formulation of a fuzzy differential equation y'=f(x,y) in terms of a set of ordinary (non fuzzy) differential equations, defined by the lower and upper components of the fuzzy-valued function f(x,y). From a computational view, the resulting ODE's can be analyzed and solved by standard methods of numerical analysis.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"On the generalized LU-fuzzy derivative and fuzzy differential equations\",\"authors\":\"Luciano Stefanini\",\"doi\":\"10.1109/FUZZY.2007.4295453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized differentiability of a fuzzy-number-valued function of a real variable, as recently introduced by Bede and Gal (Fuzzy Sets and Systems, vol. 151, 2005), can be expressed by first defining a generalized Hukuhara difference and using it for the differentiability; to do so, the basic elements are the lower and upper functions which characterize the level-cuts of the fuzzy quantities i.e. functions that are monotonic over [0,1]. Using this fact, we present a (parametric) representation of fuzzy numbers and its application to the solution of fuzzy differential (initial value) equations (FDE). The representation uses a finite decomposition of the membership interval [0,1] and models the level-cuts of fuzzy numbers and fuzzy functions to obtain the formulation of a fuzzy differential equation y'=f(x,y) in terms of a set of ordinary (non fuzzy) differential equations, defined by the lower and upper components of the fuzzy-valued function f(x,y). From a computational view, the resulting ODE's can be analyzed and solved by standard methods of numerical analysis.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
摘要
Bede和Gal (Fuzzy Sets and Systems, vol. 151, 2005)最近引入了实变量的模糊数值函数的广义可微性,可以通过首先定义广义Hukuhara差分并将其用于可微性来表示;要做到这一点,基本元素是表征模糊量的水平切割的下函数和上函数,即在[0,1]上单调的函数。利用这一事实,我们给出了模糊数的参数表示及其在模糊微分初值方程(FDE)求解中的应用。该表示使用隶属度区间[0,1]的有限分解,并对模糊数和模糊函数的水平切进行建模,得到由模糊值函数f(x,y)的上下分量定义的一组普通(非模糊)微分方程的模糊微分方程y'=f(x,y)的表达式。从计算的角度来看,所得的ODE可以用数值分析的标准方法进行分析和求解。
On the generalized LU-fuzzy derivative and fuzzy differential equations
The generalized differentiability of a fuzzy-number-valued function of a real variable, as recently introduced by Bede and Gal (Fuzzy Sets and Systems, vol. 151, 2005), can be expressed by first defining a generalized Hukuhara difference and using it for the differentiability; to do so, the basic elements are the lower and upper functions which characterize the level-cuts of the fuzzy quantities i.e. functions that are monotonic over [0,1]. Using this fact, we present a (parametric) representation of fuzzy numbers and its application to the solution of fuzzy differential (initial value) equations (FDE). The representation uses a finite decomposition of the membership interval [0,1] and models the level-cuts of fuzzy numbers and fuzzy functions to obtain the formulation of a fuzzy differential equation y'=f(x,y) in terms of a set of ordinary (non fuzzy) differential equations, defined by the lower and upper components of the fuzzy-valued function f(x,y). From a computational view, the resulting ODE's can be analyzed and solved by standard methods of numerical analysis.