部分可观测马尔可夫链的精确和近似贝叶斯平滑算法

B. Ait‐El‐Fquih, F. Desbouvries
{"title":"部分可观测马尔可夫链的精确和近似贝叶斯平滑算法","authors":"B. Ait‐El‐Fquih, F. Desbouvries","doi":"10.1063/1.2423292","DOIUrl":null,"url":null,"abstract":"Let x = {X<inf>n</inf>}<inf>n IN</inf> be a hidden process, y = {y<inf>n</inf>}<inf>n IN</inf> an observed process and r = {r<inf>n</inf>}<inf>n IN</inf> some auxiliary process. We assume that t = {t<inf>n</inf>}<inf>n IN</inf> with t<inf>n</inf> = (x<inf>n</inf>, r<inf>n</inf>, y<inf>n-1</inf>) is a (Triplet) Markov Chain (TMC). TMC are more general than Hidden Markov Chains (HMC) and yet enable the development of efficient restoration and parameter estimation algorithms. This paper is devoted to Bayesian smoothing algorithms for TMC. We first propose twelve algorithms for general TMC. In the Gaussian case, they reduce to a set of algorithms which includes, among other solutions, extensions to TMC of classical Kalman-like smoothing algorithms such as the RTS algorithms, the Two-Filter algorithm or the Bryson and Frazier algorithm. We finally propose particle filtering (PF) approximations for the general case.","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Exact and Approximate Bayesian Smoothing Algorithms in Partially Observed Markov Chains\",\"authors\":\"B. Ait‐El‐Fquih, F. Desbouvries\",\"doi\":\"10.1063/1.2423292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let x = {X<inf>n</inf>}<inf>n IN</inf> be a hidden process, y = {y<inf>n</inf>}<inf>n IN</inf> an observed process and r = {r<inf>n</inf>}<inf>n IN</inf> some auxiliary process. We assume that t = {t<inf>n</inf>}<inf>n IN</inf> with t<inf>n</inf> = (x<inf>n</inf>, r<inf>n</inf>, y<inf>n-1</inf>) is a (Triplet) Markov Chain (TMC). TMC are more general than Hidden Markov Chains (HMC) and yet enable the development of efficient restoration and parameter estimation algorithms. This paper is devoted to Bayesian smoothing algorithms for TMC. We first propose twelve algorithms for general TMC. In the Gaussian case, they reduce to a set of algorithms which includes, among other solutions, extensions to TMC of classical Kalman-like smoothing algorithms such as the RTS algorithms, the Two-Filter algorithm or the Bryson and Frazier algorithm. We finally propose particle filtering (PF) approximations for the general case.\",\"PeriodicalId\":388611,\"journal\":{\"name\":\"2006 IEEE Nonlinear Statistical Signal Processing Workshop\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Nonlinear Statistical Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.2423292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2423292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

设x = {Xn}n IN为隐藏进程,y = {yn}n IN为观察进程,r = {rn}n IN为辅助进程。我们假设t = {tn}n IN与tn = (xn, rn, n-1)是一个(三重)马尔可夫链(TMC)。TMC比隐马尔可夫链(HMC)更通用,并且能够开发有效的恢复和参数估计算法。本文研究了TMC的贝叶斯平滑算法。我们首先提出了12种通用TMC算法。在高斯情况下,它们简化为一组算法,其中包括对经典的类卡尔曼平滑算法(如RTS算法、双滤波器算法或Bryson和Frazier算法)的TMC的扩展。我们最后提出了一般情况下的粒子滤波(PF)近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact and Approximate Bayesian Smoothing Algorithms in Partially Observed Markov Chains
Let x = {Xn}n IN be a hidden process, y = {yn}n IN an observed process and r = {rn}n IN some auxiliary process. We assume that t = {tn}n IN with tn = (xn, rn, yn-1) is a (Triplet) Markov Chain (TMC). TMC are more general than Hidden Markov Chains (HMC) and yet enable the development of efficient restoration and parameter estimation algorithms. This paper is devoted to Bayesian smoothing algorithms for TMC. We first propose twelve algorithms for general TMC. In the Gaussian case, they reduce to a set of algorithms which includes, among other solutions, extensions to TMC of classical Kalman-like smoothing algorithms such as the RTS algorithms, the Two-Filter algorithm or the Bryson and Frazier algorithm. We finally propose particle filtering (PF) approximations for the general case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信