{"title":"尾形非对调插图和尾形继续接近(二)","authors":"R. Kühnau","doi":"10.2478/V10062-011-0013-6","DOIUrl":null,"url":null,"abstract":"We study a dual analogue of the class \\(\\Sigma(\\kappa)\\) of hydrodynamically normalized schlicht conformal mappings \\(g(z)\\) of the exterior of the unit circle with a \\(\\frac{1+\\kappa}{1-\\kappa}\\)-quasiconformal extension, namely now those (non-schlicht) mappings \\(g(z)\\) for which \\(\\overline{g(z)}\\) has such a quasiconformal extension.","PeriodicalId":340819,"journal":{"name":"Annales Umcs, Mathematica","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eine Klasse nichtschlichter konformer Abbildungen mit einer schlichten quasikonformen Fortsetzung. II\",\"authors\":\"R. Kühnau\",\"doi\":\"10.2478/V10062-011-0013-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a dual analogue of the class \\\\(\\\\Sigma(\\\\kappa)\\\\) of hydrodynamically normalized schlicht conformal mappings \\\\(g(z)\\\\) of the exterior of the unit circle with a \\\\(\\\\frac{1+\\\\kappa}{1-\\\\kappa}\\\\)-quasiconformal extension, namely now those (non-schlicht) mappings \\\\(g(z)\\\\) for which \\\\(\\\\overline{g(z)}\\\\) has such a quasiconformal extension.\",\"PeriodicalId\":340819,\"journal\":{\"name\":\"Annales Umcs, Mathematica\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Umcs, Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/V10062-011-0013-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Umcs, Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/V10062-011-0013-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eine Klasse nichtschlichter konformer Abbildungen mit einer schlichten quasikonformen Fortsetzung. II
We study a dual analogue of the class \(\Sigma(\kappa)\) of hydrodynamically normalized schlicht conformal mappings \(g(z)\) of the exterior of the unit circle with a \(\frac{1+\kappa}{1-\kappa}\)-quasiconformal extension, namely now those (non-schlicht) mappings \(g(z)\) for which \(\overline{g(z)}\) has such a quasiconformal extension.