估计源代码分析中潜在概念的最优数量

Scott Grant, J. Cordy
{"title":"估计源代码分析中潜在概念的最优数量","authors":"Scott Grant, J. Cordy","doi":"10.1109/SCAM.2010.22","DOIUrl":null,"url":null,"abstract":"The optimal number of latent topics required to model the most accurate latent substructure for a source code corpus is an open question in source code analysis. Most estimates about the number of latent topics that exist in a software corpus are based on the assumption that the data is similar to natural language, but there is little empirical evidence to support this. In order to help determine the appropriate number of topics needed to accurately represent the source code, we generate a series of Latent Dirichlet Allocation models with varying topic counts. We use a heuristic to evaluate the ability of the model to identify related source code blocks, and demonstrate the consequences of choosing too few or too many latent topics.","PeriodicalId":222204,"journal":{"name":"2010 10th IEEE Working Conference on Source Code Analysis and Manipulation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Estimating the Optimal Number of Latent Concepts in Source Code Analysis\",\"authors\":\"Scott Grant, J. Cordy\",\"doi\":\"10.1109/SCAM.2010.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal number of latent topics required to model the most accurate latent substructure for a source code corpus is an open question in source code analysis. Most estimates about the number of latent topics that exist in a software corpus are based on the assumption that the data is similar to natural language, but there is little empirical evidence to support this. In order to help determine the appropriate number of topics needed to accurately represent the source code, we generate a series of Latent Dirichlet Allocation models with varying topic counts. We use a heuristic to evaluate the ability of the model to identify related source code blocks, and demonstrate the consequences of choosing too few or too many latent topics.\",\"PeriodicalId\":222204,\"journal\":{\"name\":\"2010 10th IEEE Working Conference on Source Code Analysis and Manipulation\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th IEEE Working Conference on Source Code Analysis and Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCAM.2010.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th IEEE Working Conference on Source Code Analysis and Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCAM.2010.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

为源代码语料库建立最准确的潜在子结构所需的潜在主题的最优数量是源代码分析中的一个开放问题。大多数关于软件语料库中存在的潜在主题数量的估计都是基于数据与自然语言相似的假设,但是很少有经验证据支持这一点。为了帮助确定准确表示源代码所需的适当主题数量,我们生成了一系列具有不同主题数量的Latent Dirichlet Allocation模型。我们使用启发式方法来评估模型识别相关源代码块的能力,并演示选择过少或过多潜在主题的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the Optimal Number of Latent Concepts in Source Code Analysis
The optimal number of latent topics required to model the most accurate latent substructure for a source code corpus is an open question in source code analysis. Most estimates about the number of latent topics that exist in a software corpus are based on the assumption that the data is similar to natural language, but there is little empirical evidence to support this. In order to help determine the appropriate number of topics needed to accurately represent the source code, we generate a series of Latent Dirichlet Allocation models with varying topic counts. We use a heuristic to evaluate the ability of the model to identify related source code blocks, and demonstrate the consequences of choosing too few or too many latent topics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信