不确定非线性系统参数在线辨识的神经网络收缩控制

Lai Wei, R. McCloy, Jie Bao
{"title":"不确定非线性系统参数在线辨识的神经网络收缩控制","authors":"Lai Wei, R. McCloy, Jie Bao","doi":"10.1109/anzcc53563.2021.9628203","DOIUrl":null,"url":null,"abstract":"Motivated by the trend of flexible manufacturing in the process control industry and the uncertain nature of chemical process models, this article aims to achieve offset-free tracking for a family of uncertain nonlinear systems. The proposed control approach employs two main modules: a neural network embedded contraction-based controller to ensure convergence to time-varying references; and an online identification module coupled with a reference generator to provide convergency of the modelled parameters to that of the physical system. The first step in the proposed approach is to provide a guaranteed contraction condition for nonlinear systems, subject to time-varying parametric uncertainty, that are driven by neural network embedded controllers and modelled parameter estimates. The second step is to provide unknown system parameter identification online. By ensuring that uncertain parameter estimates converge to the corresponding physical values, offset-free tracking can be achieved. An illustrative example is included to demonstrate the overall approach.","PeriodicalId":246687,"journal":{"name":"2021 Australian & New Zealand Control Conference (ANZCC)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neural Network-based Contraction Control with Online Parameter Identification for Uncertain Nonlinear Systems\",\"authors\":\"Lai Wei, R. McCloy, Jie Bao\",\"doi\":\"10.1109/anzcc53563.2021.9628203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the trend of flexible manufacturing in the process control industry and the uncertain nature of chemical process models, this article aims to achieve offset-free tracking for a family of uncertain nonlinear systems. The proposed control approach employs two main modules: a neural network embedded contraction-based controller to ensure convergence to time-varying references; and an online identification module coupled with a reference generator to provide convergency of the modelled parameters to that of the physical system. The first step in the proposed approach is to provide a guaranteed contraction condition for nonlinear systems, subject to time-varying parametric uncertainty, that are driven by neural network embedded controllers and modelled parameter estimates. The second step is to provide unknown system parameter identification online. By ensuring that uncertain parameter estimates converge to the corresponding physical values, offset-free tracking can be achieved. An illustrative example is included to demonstrate the overall approach.\",\"PeriodicalId\":246687,\"journal\":{\"name\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/anzcc53563.2021.9628203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/anzcc53563.2021.9628203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于过程控制行业中柔性制造的趋势和化学过程模型的不确定性,本文旨在实现一类不确定非线性系统的无偏移跟踪。所提出的控制方法采用两个主要模块:神经网络嵌入式基于收缩的控制器,以确保收敛到时变参考;以及与参考发生器耦合的在线识别模块,以使建模参数收敛于物理系统的参数。该方法的第一步是为受时变参数不确定性影响的非线性系统提供一个保证的收缩条件,该系统由神经网络嵌入式控制器和建模参数估计驱动。第二步是对未知系统参数进行在线辨识。通过保证不确定参数估计收敛到相应的物理值,可以实现无偏移跟踪。包括一个说明性示例来演示整个方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neural Network-based Contraction Control with Online Parameter Identification for Uncertain Nonlinear Systems
Motivated by the trend of flexible manufacturing in the process control industry and the uncertain nature of chemical process models, this article aims to achieve offset-free tracking for a family of uncertain nonlinear systems. The proposed control approach employs two main modules: a neural network embedded contraction-based controller to ensure convergence to time-varying references; and an online identification module coupled with a reference generator to provide convergency of the modelled parameters to that of the physical system. The first step in the proposed approach is to provide a guaranteed contraction condition for nonlinear systems, subject to time-varying parametric uncertainty, that are driven by neural network embedded controllers and modelled parameter estimates. The second step is to provide unknown system parameter identification online. By ensuring that uncertain parameter estimates converge to the corresponding physical values, offset-free tracking can be achieved. An illustrative example is included to demonstrate the overall approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信