分形图像压缩的并行实现

H. Lin, A. Venetsanopoulos
{"title":"分形图像压缩的并行实现","authors":"H. Lin, A. Venetsanopoulos","doi":"10.1109/CCECE.1995.526608","DOIUrl":null,"url":null,"abstract":"Fractal image encoding is based on the self-similarity search between range and domain blocks. It can be parallelized in three different ways. In this paper, we first formulate the encoding process and then present one of the parallel implementations on KSRI (Kendall Square Research parallel computer). Experimental results include the encoding time as a function of the number of processors and the speedup curve. The speedup of the encoding process is significant when compared to serial computation.","PeriodicalId":158581,"journal":{"name":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Parallel implementation of fractal image compression\",\"authors\":\"H. Lin, A. Venetsanopoulos\",\"doi\":\"10.1109/CCECE.1995.526608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractal image encoding is based on the self-similarity search between range and domain blocks. It can be parallelized in three different ways. In this paper, we first formulate the encoding process and then present one of the parallel implementations on KSRI (Kendall Square Research parallel computer). Experimental results include the encoding time as a function of the number of processors and the speedup curve. The speedup of the encoding process is significant when compared to serial computation.\",\"PeriodicalId\":158581,\"journal\":{\"name\":\"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.1995.526608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Canadian Conference on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1995.526608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

分形图像编码是基于范围块和域块之间的自相似性搜索。它可以以三种不同的方式并行化。本文首先阐述了编码过程,然后在KSRI (Kendall Square Research并行计算机)上给出了一种并行实现。实验结果包括编码时间与处理器数量的函数关系和加速曲线。与串行计算相比,编码过程的加速是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel implementation of fractal image compression
Fractal image encoding is based on the self-similarity search between range and domain blocks. It can be parallelized in three different ways. In this paper, we first formulate the encoding process and then present one of the parallel implementations on KSRI (Kendall Square Research parallel computer). Experimental results include the encoding time as a function of the number of processors and the speedup curve. The speedup of the encoding process is significant when compared to serial computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信