{"title":"多层液体冷板的热性能研究","authors":"Andoniaina M. Randriambololona, M. Shaeri","doi":"10.11159/htff22.115","DOIUrl":null,"url":null,"abstract":"- Thermal performances of multi-layered cold plates (CPs) with varying numbers of channels are investigated through three-dimensional simulation of laminar flow and heat transfer. Thermal performances are characterized by the maximum temperature and temperature variation across the heating surface. The thermal performances are presented as functions of flow rates and pumping power to provide better insight on CP’s practical applications. It was found that at both a given flow rate and pumping power, increasing the number of layers monotonically enhances the heat transfer rate.; however, the percentage of enhancement of heat transfer is reduced by increasing the number of layers beyond two due to additional thermal resistance experienced between the lower-level channels/layers and the heat source. The findings suggest the existence of a threshold number of layers such that beyond that threshold, the heat transfer is not enhanced.","PeriodicalId":385356,"journal":{"name":"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Performances of Multi-Layered Liquid Cold Plates\",\"authors\":\"Andoniaina M. Randriambololona, M. Shaeri\",\"doi\":\"10.11159/htff22.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- Thermal performances of multi-layered cold plates (CPs) with varying numbers of channels are investigated through three-dimensional simulation of laminar flow and heat transfer. Thermal performances are characterized by the maximum temperature and temperature variation across the heating surface. The thermal performances are presented as functions of flow rates and pumping power to provide better insight on CP’s practical applications. It was found that at both a given flow rate and pumping power, increasing the number of layers monotonically enhances the heat transfer rate.; however, the percentage of enhancement of heat transfer is reduced by increasing the number of layers beyond two due to additional thermal resistance experienced between the lower-level channels/layers and the heat source. The findings suggest the existence of a threshold number of layers such that beyond that threshold, the heat transfer is not enhanced.\",\"PeriodicalId\":385356,\"journal\":{\"name\":\"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/htff22.115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/htff22.115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal Performances of Multi-Layered Liquid Cold Plates
- Thermal performances of multi-layered cold plates (CPs) with varying numbers of channels are investigated through three-dimensional simulation of laminar flow and heat transfer. Thermal performances are characterized by the maximum temperature and temperature variation across the heating surface. The thermal performances are presented as functions of flow rates and pumping power to provide better insight on CP’s practical applications. It was found that at both a given flow rate and pumping power, increasing the number of layers monotonically enhances the heat transfer rate.; however, the percentage of enhancement of heat transfer is reduced by increasing the number of layers beyond two due to additional thermal resistance experienced between the lower-level channels/layers and the heat source. The findings suggest the existence of a threshold number of layers such that beyond that threshold, the heat transfer is not enhanced.