{"title":"求解连续统假设的一种算法","authors":"Lam Kai Shun","doi":"10.2139/ssrn.3318201","DOIUrl":null,"url":null,"abstract":"The continuum hypothesis has been unsolved for hundreds of years. In other words, can I answer it completely? By refuting the culturally responsible continuum [1], one can link the problem to the mathematical continuum, and it is possible to disproof the continuum hypothesis [2] . To go ahead a step, one may extend our mathematical system (by employing a more powerful set theory) and solve the continuum problem by three conditional cases. This event is sim-ilar to the status cases in the discriminant of solving a quadratic equation. Hence, my proposed al-gorithmic flowchart can best settle and depict the problem. From the above, one can further con-clude that when people extend mathematics (like set theory — ZFC) into new systems (such as Force Axioms), experts can solve important mathematical problems (CH). Indeed, there are differ-ent types of such mathematical systems, similar to ancient mathematical notation. Hence, different cultures have different ways of representation, which is similar to a Chinese saying: “different vil-lages have different laws.” However, the primary purpose of mathematical notation was initially to remember and communicate. This event indicates that the basic purpose of developing any new mathematical system is to help solve a natural phenomenon in our universe.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Algorithmic Approach to Solve Continuum Hypothesis\",\"authors\":\"Lam Kai Shun\",\"doi\":\"10.2139/ssrn.3318201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuum hypothesis has been unsolved for hundreds of years. In other words, can I answer it completely? By refuting the culturally responsible continuum [1], one can link the problem to the mathematical continuum, and it is possible to disproof the continuum hypothesis [2] . To go ahead a step, one may extend our mathematical system (by employing a more powerful set theory) and solve the continuum problem by three conditional cases. This event is sim-ilar to the status cases in the discriminant of solving a quadratic equation. Hence, my proposed al-gorithmic flowchart can best settle and depict the problem. From the above, one can further con-clude that when people extend mathematics (like set theory — ZFC) into new systems (such as Force Axioms), experts can solve important mathematical problems (CH). Indeed, there are differ-ent types of such mathematical systems, similar to ancient mathematical notation. Hence, different cultures have different ways of representation, which is similar to a Chinese saying: “different vil-lages have different laws.” However, the primary purpose of mathematical notation was initially to remember and communicate. This event indicates that the basic purpose of developing any new mathematical system is to help solve a natural phenomenon in our universe.\",\"PeriodicalId\":375032,\"journal\":{\"name\":\"Academic Journal of Applied Mathematical Sciences\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Applied Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3318201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3318201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Algorithmic Approach to Solve Continuum Hypothesis
The continuum hypothesis has been unsolved for hundreds of years. In other words, can I answer it completely? By refuting the culturally responsible continuum [1], one can link the problem to the mathematical continuum, and it is possible to disproof the continuum hypothesis [2] . To go ahead a step, one may extend our mathematical system (by employing a more powerful set theory) and solve the continuum problem by three conditional cases. This event is sim-ilar to the status cases in the discriminant of solving a quadratic equation. Hence, my proposed al-gorithmic flowchart can best settle and depict the problem. From the above, one can further con-clude that when people extend mathematics (like set theory — ZFC) into new systems (such as Force Axioms), experts can solve important mathematical problems (CH). Indeed, there are differ-ent types of such mathematical systems, similar to ancient mathematical notation. Hence, different cultures have different ways of representation, which is similar to a Chinese saying: “different vil-lages have different laws.” However, the primary purpose of mathematical notation was initially to remember and communicate. This event indicates that the basic purpose of developing any new mathematical system is to help solve a natural phenomenon in our universe.