求解连续统假设的一种算法

Lam Kai Shun
{"title":"求解连续统假设的一种算法","authors":"Lam Kai Shun","doi":"10.2139/ssrn.3318201","DOIUrl":null,"url":null,"abstract":"The continuum hypothesis has been unsolved for hundreds of years. In other words, can I answer it completely? By refuting the culturally responsible continuum [1], one can link the problem to the mathematical continuum, and it is possible to disproof the continuum hypothesis [2] . To go ahead a step, one may extend our mathematical system (by employing a more powerful set theory) and solve the continuum problem by three conditional cases. This event is sim-ilar to the status cases in the discriminant of solving a quadratic equation. Hence, my proposed al-gorithmic flowchart can best settle and depict the problem. From the above, one can further con-clude that when people extend mathematics (like set theory — ZFC) into new systems (such as Force Axioms), experts can solve important mathematical problems (CH). Indeed, there are differ-ent types of such mathematical systems, similar to ancient mathematical notation. Hence, different cultures have different ways of representation, which is similar to a Chinese saying: “different vil-lages have different laws.” However, the primary purpose of mathematical notation was initially to remember and communicate. This event indicates that the basic purpose of developing any new mathematical system is to help solve a natural phenomenon in our universe.","PeriodicalId":375032,"journal":{"name":"Academic Journal of Applied Mathematical Sciences","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Algorithmic Approach to Solve Continuum Hypothesis\",\"authors\":\"Lam Kai Shun\",\"doi\":\"10.2139/ssrn.3318201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continuum hypothesis has been unsolved for hundreds of years. In other words, can I answer it completely? By refuting the culturally responsible continuum [1], one can link the problem to the mathematical continuum, and it is possible to disproof the continuum hypothesis [2] . To go ahead a step, one may extend our mathematical system (by employing a more powerful set theory) and solve the continuum problem by three conditional cases. This event is sim-ilar to the status cases in the discriminant of solving a quadratic equation. Hence, my proposed al-gorithmic flowchart can best settle and depict the problem. From the above, one can further con-clude that when people extend mathematics (like set theory — ZFC) into new systems (such as Force Axioms), experts can solve important mathematical problems (CH). Indeed, there are differ-ent types of such mathematical systems, similar to ancient mathematical notation. Hence, different cultures have different ways of representation, which is similar to a Chinese saying: “different vil-lages have different laws.” However, the primary purpose of mathematical notation was initially to remember and communicate. This event indicates that the basic purpose of developing any new mathematical system is to help solve a natural phenomenon in our universe.\",\"PeriodicalId\":375032,\"journal\":{\"name\":\"Academic Journal of Applied Mathematical Sciences\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Applied Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3318201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Applied Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3318201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

连续体假说几百年来一直没有得到解决。换句话说,我能完全回答这个问题吗?通过驳斥文化上负责任的连续统b[1],人们可以将问题与数学连续统联系起来,并且有可能反驳连续统假设b[2]。更进一步,我们可以扩展我们的数学系统(通过使用更强大的集合理论),并通过三种条件情况来解决连续统问题。这个事件类似于解二次方程的判别式中的状态情况。因此,我提出的算法流程图可以最好地解决和描述这个问题。从上面可以进一步得出结论,当人们将数学(如集合论)扩展到新的系统(如力公理)时,专家可以解决重要的数学问题(CH)。事实上,有不同类型的这样的数学系统,类似于古代数学符号。因此,不同的文化有不同的表现方式,这类似于中国的一句谚语:“不同的村庄有不同的法律。”然而,数学符号最初的主要目的是为了记忆和交流。这一事件表明,发展任何新的数学系统的基本目的是帮助解决我们宇宙中的自然现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algorithmic Approach to Solve Continuum Hypothesis
The continuum hypothesis has been unsolved for hundreds of years. In other words, can I answer it completely? By refuting the culturally responsible continuum [1], one can link the problem to the mathematical continuum, and it is possible to disproof the continuum hypothesis [2] . To go ahead a step, one may extend our mathematical system (by employing a more powerful set theory) and solve the continuum problem by three conditional cases. This event is sim-ilar to the status cases in the discriminant of solving a quadratic equation. Hence, my proposed al-gorithmic flowchart can best settle and depict the problem. From the above, one can further con-clude that when people extend mathematics (like set theory — ZFC) into new systems (such as Force Axioms), experts can solve important mathematical problems (CH). Indeed, there are differ-ent types of such mathematical systems, similar to ancient mathematical notation. Hence, different cultures have different ways of representation, which is similar to a Chinese saying: “different vil-lages have different laws.” However, the primary purpose of mathematical notation was initially to remember and communicate. This event indicates that the basic purpose of developing any new mathematical system is to help solve a natural phenomenon in our universe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信