基于边缘化和数据克隆的SMC潜在变量模型的极大似然估计

J. Duan, Andras Fulop, Yu-Wei Hsieh
{"title":"基于边缘化和数据克隆的SMC潜在变量模型的极大似然估计","authors":"J. Duan, Andras Fulop, Yu-Wei Hsieh","doi":"10.2139/ssrn.3043426","DOIUrl":null,"url":null,"abstract":"A data-cloning SMC² method is proposed as a general purpose optimization routine for estimating latent variable models by maximum likelihood. The latent variables are first marginalized out by SMC at any fixed parameter value, and the model parameters are then estimated by density tempered SMC. The data-cloning step is employed to efficiently reduce Monte Carlo errors inherent in the SMC² algorithm and also to effectively address multi-modality present in typical objective functions. This new method has wide applicability and can be massively parallelized to take advantage of typical computers today.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum Likelihood Estimation of Latent Variable Models by SMC with Marginalization and Data Cloning\",\"authors\":\"J. Duan, Andras Fulop, Yu-Wei Hsieh\",\"doi\":\"10.2139/ssrn.3043426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A data-cloning SMC² method is proposed as a general purpose optimization routine for estimating latent variable models by maximum likelihood. The latent variables are first marginalized out by SMC at any fixed parameter value, and the model parameters are then estimated by density tempered SMC. The data-cloning step is employed to efficiently reduce Monte Carlo errors inherent in the SMC² algorithm and also to effectively address multi-modality present in typical objective functions. This new method has wide applicability and can be massively parallelized to take advantage of typical computers today.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3043426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3043426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种数据克隆SMC²方法,作为最大似然估计潜在变量模型的通用优化程序。在任意固定的参数值处,先用SMC将潜在变量边缘化,然后用密度回火SMC估计模型参数。采用数据克隆步骤可以有效地减少SMC²算法中固有的蒙特卡罗误差,也可以有效地解决典型目标函数中存在的多模态问题。这种新方法具有广泛的适用性,并且可以大规模并行化以利用当今的典型计算机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Likelihood Estimation of Latent Variable Models by SMC with Marginalization and Data Cloning
A data-cloning SMC² method is proposed as a general purpose optimization routine for estimating latent variable models by maximum likelihood. The latent variables are first marginalized out by SMC at any fixed parameter value, and the model parameters are then estimated by density tempered SMC. The data-cloning step is employed to efficiently reduce Monte Carlo errors inherent in the SMC² algorithm and also to effectively address multi-modality present in typical objective functions. This new method has wide applicability and can be massively parallelized to take advantage of typical computers today.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信